Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Heavy-Tailed Time Series - Rafal Kulik, Philippe Soulier

Heavy-Tailed Time Series

Buch | Hardcover
681 Seiten
2020 | 1st ed. 2020
Springer-Verlag New York Inc.
978-1-0716-0735-0 (ISBN)
CHF 119,80 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book aims to present a comprehensive, self-contained, and concise overview of extreme value theory for time series, incorporating the latest research trends alongside classical methodology. Appropriate for graduate coursework or professional reference, the book requires a background in extreme value theory for i.i.d. data and basics of time series. Following a brief review of foundational concepts, it progresses linearly through topics in limit theorems and time series models while including historical insights at each chapter’s conclusion. Additionally, the book incorporates complete proofs and exercises with solutions as well as substantive reference lists and appendices, featuring a novel commentary on the theory of vague convergence.

Rafal Kulik graduated from the University of Wroclaw, Poland. He is currently a Professor at the Department of Mathematics and Statistics, University of Ottawa. His research interests are centered around limit theorems for stochastic  processes with temporal dependence.  Philippe Soulier graduated from Ecole Normale Supérieure de Paris and obtained his PhD at University Paris XI Orsay. He is Professor of Mathematics at University Paris Nanterre. His main themes of research are long memory processes and extreme value theory.

Regular variation.- Regularly varying random variables.- Regularly varying random vectors.- Dealing with extremal independence.- Regular variation of series and random sums.- Regularly varying time series.-  Limit theorems.- Convergence of clusters-. Point process convergence.- Convergence to stable and extremal processes.- The tall empirical and quantile processes.- Estimation of cluster functionals.- Estimation for extremally independent time series.- Bootstrap.- Time series models.- Max-stable processes.- Markov chains.- Moving averages.- Long memory processes.- Appendices. 

Erscheinungsdatum
Reihe/Serie Springer Series in Operations Research and Financial Engineering
Zusatzinfo 5 Illustrations, color; 2 Illustrations, black and white; XIX, 681 p. 7 illus., 5 illus. in color.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte extremal processes • extreme value theory • point processes • stable processes • Statistics of extreme values • tail inference • Time Series
ISBN-10 1-0716-0735-9 / 1071607359
ISBN-13 978-1-0716-0735-0 / 9781071607350
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren

von Michael Karbach

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
CHF 97,90
Elastostatik

von Dietmar Gross; Werner Hauger; Jörg Schröder …

Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 46,70