Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Quantum Riemannian Geometry (eBook)

eBook Download: PDF
2020 | 1st ed. 2020
XVI, 809 Seiten
Springer International Publishing (Verlag)
978-3-030-30294-8 (ISBN)

Lese- und Medienproben

Quantum Riemannian Geometry - Edwin J. Beggs, Shahn Majid
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book provides a comprehensive account of a modern generalisation of differential geometry in which coordinates need not commute. This requires a reinvention of differential geometry that refers only to the coordinate algebra, now possibly noncommutative, rather than to actual points.

Such a theory is needed for the geometry of Hopf algebras or quantum groups, which provide key examples, as well as in physics to model quantum gravity effects in the form of quantum spacetime. The mathematical formalism can be applied to any algebra and includes graph geometry and a Lie theory of finite groups. Even the algebra of 2 x 2 matrices turns out to admit a rich moduli of quantum Riemannian geometries. The approach taken is a `bottom up' one in which the different layers of geometry are built up in succession, starting from differential forms and proceeding up to the notion of a quantum `Levi-Civita' bimodule connection, geometric Laplacians and, in some cases, Dirac operators.The book also covers elements of Connes' approach to the subject coming from cyclic cohomology and spectral triples. Other topics include various other cohomology theories, holomorphic structures and noncommutative D-modules.

A unique feature of the book is its constructive approach and its wealth of examples drawn from a large body of literature in mathematical physics, now put on a firm algebraic footing. Including exercises with solutions, it can be used as a textbook for advanced courses as well as a reference for researchers.




Edwin J. Beggs studied mathematics at Churchill college Cambridge, moving to St Catherine's college Oxford to study for a DPhil under the supervision of Graeme Segal, finishing in 1988. He became a research assistant working with David Evans on operator algebras (giving a formula for the real rank of matrix valued functions) in Swansea and was appointed to a lectureship there. He has worked with Peter Johnson, finding the inverse scattering method for solitons in affine Toda field theory. He has worked with various coauthors on noncommutative differential geometry, introducing noncommutative sheaf theory, noncommutative complex structures and bar categories as well as working on bimodule connections and quantum Riemannian geometry. He also works on physics and computation in computer science.

Shahn Majid graduated from Cambridge, including Part III of the mathematics tripos, followed by a PhD at Harvard in 1988. After a year in Swansea, he spent ten years in DAMTP in Cambridge before moving to Queen Mary. He was one of the pioneers of the modern theory of Hopf algebras or quantum groups, introducing in his PhD thesis one of the two main classes at the, the bicrossproduct ones associated to Lie group factorisations. Other results include the earliest models of quantum spacetime with quantum symmetry, the theory of Hopf algebras in braided categories and the dual/centre of a monoidal category. He was one of the coauthors of the theory of quantum principal bundles and introduced a frame bundle approach to quantum Riemannian geometry. In recent years he has been working on the bimodule approach and with a view to quantum gravity.

Erscheint lt. Verlag 31.1.2020
Reihe/Serie Grundlehren der mathematischen Wissenschaften
Grundlehren der mathematischen Wissenschaften
Zusatzinfo XVI, 809 p. 124 illus., 8 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik
Naturwissenschaften Physik / Astronomie Theoretische Physik
Schlagworte braided Lie algebra • cochain twist • differential graded algebra • discrete geometry of graphs • holomorphic structure • Hopf algebra • noncommutative D-modules • Noncommutative Geometry • Poisson-Riemannian geometry • Quantum Gravity • quantum groups • quantum Levi-Civita bimodule connection • Quantum Spacetime
ISBN-10 3-030-30294-6 / 3030302946
ISBN-13 978-3-030-30294-8 / 9783030302948
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 15,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Theoretische Physik I

von Peter Reineker; Michael Schulz; Beatrix M. Schulz …

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
CHF 47,85
Theoretische Physik I

von Peter Reineker; Michael Schulz; Beatrix M. Schulz …

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
CHF 47,85