Rigid Character Groups, Lubin-Tate Theory, and $(/varphi ,/Gamma )$-Modules
Seiten
2020
American Mathematical Society (Verlag)
978-1-4704-4073-2 (ISBN)
American Mathematical Society (Verlag)
978-1-4704-4073-2 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
The main idea of this article is to carry out a Lubin-Tate generalization of the theory of cyclotomic $(/varphi,/Gamma )$-modules in a different fashion. Instead of the $p$-adic open unit disk, the authors work over a character variety that parameterizes the locally $L$-analytic characters on $o_L$.
The construction of the $p$-adic local Langlands correspondence for $/mathrm{GL}_2(/mathbf{Q}_p)$ uses in an essential way Fontaine's theory of cyclotomic $(/varphi ,/Gamma )$-modules. Here cyclotomic means that $/Gamma = /mathrm {Gal}(/mathbf{Q}_p(/mu_{p^/infty})//mathbf{Q}_p)$ is the Galois group of the cyclotomic extension of $/mathbf Q_p$. In order to generalize the $p$-adic local Langlands correspondence to $/mathrm{GL}_{2}(L)$, where $L$ is a finite extension of $/mathbf{Q}_p$, it seems necessary to have at our disposal a theory of Lubin-Tate $(/varphi ,/Gamma )$-modules. Such a generalization has been carried out, to some extent, by working over the $p$-adic open unit disk, endowed with the action of the endomorphisms of a Lubin-Tate group. The main idea of this article is to carry out a Lubin-Tate generalization of the theory of cyclotomic $(/varphi ,/Gamma )$-modules in a different fashion. Instead of the $p$-adic open unit disk, the authors work over a character variety that parameterizes the locally $L$-analytic characters on $o_L$. They study $(/varphi ,/Gamma )$-modules in this setting and relate some of them to what was known previously.
The construction of the $p$-adic local Langlands correspondence for $/mathrm{GL}_2(/mathbf{Q}_p)$ uses in an essential way Fontaine's theory of cyclotomic $(/varphi ,/Gamma )$-modules. Here cyclotomic means that $/Gamma = /mathrm {Gal}(/mathbf{Q}_p(/mu_{p^/infty})//mathbf{Q}_p)$ is the Galois group of the cyclotomic extension of $/mathbf Q_p$. In order to generalize the $p$-adic local Langlands correspondence to $/mathrm{GL}_{2}(L)$, where $L$ is a finite extension of $/mathbf{Q}_p$, it seems necessary to have at our disposal a theory of Lubin-Tate $(/varphi ,/Gamma )$-modules. Such a generalization has been carried out, to some extent, by working over the $p$-adic open unit disk, endowed with the action of the endomorphisms of a Lubin-Tate group. The main idea of this article is to carry out a Lubin-Tate generalization of the theory of cyclotomic $(/varphi ,/Gamma )$-modules in a different fashion. Instead of the $p$-adic open unit disk, the authors work over a character variety that parameterizes the locally $L$-analytic characters on $o_L$. They study $(/varphi ,/Gamma )$-modules in this setting and relate some of them to what was known previously.
Laurent Berger, UMPA ENS de Lyon, France, Peter Schneider, Universitat Munster, Munster, Germany Bingyong Xie, East China Normal University, Shanghai, People's Republic of China
Introduction
Lubin-Tate theory and the character variety
The boundary of $/mathfrak{X}$ and $(/varphi_{L},/Gamma_{L})$-modules
Construction of $(/varphi_{L},/Gamma_{L})$-modules.
Erscheinungsdatum | 03.03.2020 |
---|---|
Reihe/Serie | Memoirs of the American Mathematical Society |
Verlagsort | Providence |
Sprache | englisch |
Maße | 178 x 254 mm |
Gewicht | 178 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
ISBN-10 | 1-4704-4073-3 / 1470440733 |
ISBN-13 | 978-1-4704-4073-2 / 9781470440732 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2022)
Springer Spektrum (Verlag)
CHF 55,95