Accurate Case Outcome Modeling (eBook)
XVII, 255 Seiten
Springer International Publishing (Verlag)
978-3-030-26818-3 (ISBN)
This volume advocates accurate case outcome prediction that does not rely on symmetric modeling. To that end, it provides theory construction and testing applications in several sub-disciplines of business and the social sciences to illustrate how to move away from symmetric theory construction. Each chapter constructs case outcome theory and includes empirical analysis of outcomes. Chapter 1 provides a foundation of symmetric variable directional-relationship theory construction and null hypothesis significance testing versus asymmetric case outcome theory construction and somewhat precise outcome testing, while Chapters 2-6 investigate these principles through a range of applications.
This volume will be very useful to researchers and professionals in manufacturing, service, consulting, management, marketing, organizational studies, and more. It will also be an excellent resource for advanced statistics students in building and testing case outcome models. Data sets are included so that readers can replicate findings presented in each chapter, and grow to present and test additional theories.
Preface: Embracing Case Outcome Modeling in Theory Construction and Empirical Research in the Social Sciences and Business Subdisciplines 6
References 8
Acknowledgments 9
References 9
Contents 10
Chapter 1: Matching Case Identification Hypotheses and Case-Level Data Analysis 13
1 Introduction 14
2 Symmetric Testing of Configural Outcomes to Overcome Regression Analysis Limitations 15
3 Use of Algorithms of Configural Antecedents to Overcome Regression Analysis Limitations 20
4 Asymmetric Theory and Data Analysis 22
5 Research Applications of Case-Based Theory and Case Identification Hypotheses Testing 28
6 Visualizing Matching Generalized Cased-Based Theory and Case Identification Hypotheses Testing 31
7 Conclusion 33
Appendix 1: Data for Cases 23–45 34
Appendix 2: Data for Cases 46–60 34
References 35
Chapter 2: Constructing Algorithms for Forecasting High (Low) Project Management Performance 37
1 Introduction 38
2 Core Tenets of Complexity Theory Applicable for Examining PMP Antecedent Conditions 40
3 Configurational Theory of Complex Antecedent Conditions Indicating High (Low) PMP 44
4 Method 50
4.1 Survey Instrument 50
4.2 Respondents 51
4.3 Analysis 52
4.4 Consistency and Coverage 53
5 Findings 53
5.1 Detailed Findings 54
6 Discussion, Contributions, and Limitations 62
7 Conclusion 64
References 65
Chapter 3: Accurate Outcome Performance Screening in Strategic Management 68
1 Introduction 69
2 Configurational Nature of Marketing Capabilities and Organizational Contexts 72
2.1 Configuration Elements of Marketing Organizational Capabilities and Marketing Execution Capabilities Fit with Organization Context 72
2.2 Marketing Organizational Capabilities and Their Fit with Organizational Context and Performance 73
2.3 Marketing Capabilities and Their Fit with Organizational Context and Market Performance and Profit Margin 74
2.3.1 High Market Performance and High-Profit Margin 74
2.3.2 High Market Performance and Low-Profit Margin 74
2.3.3 Low Market Performance and Low-Profit Margin 75
2.3.4 Low Market Performance and High-Profit Margin 75
2.4 Marketing Capabilities and Their Execution Fit with Organizational Context and Customer Performance 76
2.4.1 High Customer Performance and High-Profit Margin 76
2.4.2 High Customer Performance and Low-Profit Margin 76
2.4.3 Low Customer Performance and Low-Profit Margin 76
2.4.4 Low Customer Performance and High-Profit Margin 77
2.5 The Effect of a Competitive Environment 77
2.6 The Effect of Firm Demographics 78
2.6.1 Firm Size 78
2.6.2 Service Versus Production Orientation 78
3 Data and Methods 78
3.1 Data 78
3.2 Analysis 80
3.3 Calibration of Set Memberships 81
3.3.1 Outcomes 81
3.3.2 Marketing Organizational Capabilities and Marketing Execution Capabilities Quality 82
3.3.3 Firm Contingencies 83
4 Findings 84
4.1 Configurations for Achieving High Market Performance and High-Profit Margin Versus Configurations for Low Market Performance and Low-Profit Margin 84
4.2 Configurations for Achieving High Market Performance and Low-Profit Margin Versus Configurations for Low Market Performance and High-Profit Margin 87
4.3 Configurations for Achieving High Customer Performance and High-Profit Margin Versus Configurations for Low Customer Performance and Low-Profit Margin 89
4.4 Configurations for Achieving High Customer Performance and Low-Profit Margin Versus Configurations for Low Customer Performance and High-Profit Margin 91
5 Discussion 93
6 Managerial Implications 96
7 Limitation and Future Research Avenues 97
Appendix A Sample Distribution 98
Appendix B Measurement Items and Standardized Loadings 99
Appendix C Set Memberships and Calibration Measures/Measures and Sample Descriptives 100
References 102
Chapter 4: Modeling Human Resource Outcomes 106
1 Introduction 107
2 Case-Based Outcome Modeling of Knowledge Workers’ Environment Choices 108
3 Method 111
3.1 Sample and Procedures 111
3.2 Measures 111
3.3 Analysis 112
4 Findings 115
4.1 Findings for Models for High CEW and CEP 117
4.2 Findings for Models for High CEW and Low CEP 119
4.3 Findings for Models for Low CEW and Low CEP 119
5 Discussion, Limitations, and Contributions 120
5.1 Confirming the Four Tenets of Configural Theory 122
5.2 Limitations and Suggestions for Future Research 123
5.3 Implications 123
References 124
Chapter 5: Customers’ Assessments of Retail Traditional Local Markets: Strategy Outcome Performance Screening 126
1 Introduction 127
2 A Case-Based General Theory of Place Sustainability and Place Attractiveness 131
2.1 P1: Complex Antecedent Demographic Configurations and Visit Frequency and Expenditures 135
2.2 P2: A Few Complex Antecedent Demographic Configurations Affect Place Sustainability 137
2.3 P3: Specific Demographic Configurations Exhibit High TLM (Brand) Attractiveness, While Other Specific Demographic Configurations Exhibit Low TLM (Brand) Attractiveness 140
2.4 P4: TLM Sustainability Configurations and TLM Attractiveness 140
2.5 P5: Sustainability Assessments and Customer Behavior (Visits and Expenditures) 141
2.6 P6: Place Attractiveness and Shopping Behavior (Visits and Expenditures) 142
2.7 P7: Sustainability Assessments and Place Attractiveness Configurations Explain and Accurately Predict Expenditures and Trip Plans to a TLM 143
3 Complexity Theory Applications to Place Assessment Research 143
4 Method 146
5 Variables 146
6 Validity and Reliability Analysis of Measurement 147
7 Calibrating Variable Values to Case Membership Scores 149
7.1 Data Calibration 149
8 Consistency and Coverage 151
9 Findings 151
9.1 Findings for P1: Demographic Configurations Explaining Customer Visits and Expenditures 152
10 P2 Findings: Demographics and Place Sustainability 154
10.1 Customers’ Demographic Configurations Indicating High and Low Economic Sustainability Assessment 154
10.2 Demographic Configurations Indicating High and Social Sustainability Assessment 157
10.3 Demographic Configurations Indicating High and Low Environment Sustainability Assessments 158
10.4 Demographic Configurations Indicating High and Low Culture Sustainability Assessments 158
10.5 Demographic Configurations Indicating High and Low Sustainability Across All Four Dimensions 159
11 P3 Findings: Complex Demographic Configurations and Place Attractiveness Assessments 160
11.1 Demographic Configurations Indicating Cases with High Versus Low TLM Image 160
11.2 Demographic Configurations Indicating Cases with High Versus Low TLM Satisfaction 163
11.3 Demographic Configurations Indicating Cases with High Versus Low TLM Trust Assessments 163
11.4 Demographic Configurations Indicating Cases with High Versus Low TLM Loyalty Assessments 164
12 Demographic Configurations Indicating Cases with High Versus Low TLM for General Attractiveness Assessments 164
13 P4 Findings: Complex Sustainability Conditions Indicating TLM Attractiveness 165
14 P4X Findings: Sustainability and Demographic Configurations Indicating TLM Market Attractiveness 166
15 Findings for P5 and P5X: Customers’ Sustainability Configurations Indicating High Versus Low Local Market Frequency of Visits—Without and with Demographic Configurations 166
16 Findings for P5 and P5X for Expenditures: Customers’ Sustainability Configurations Indicating High Versus Low Expenditures—Without and with Demographic Configurations 170
17 P6 Findings: Customers’ Brand Attractiveness Configurations Without and with Demographic Conditions Indicating High Versus Low Local Market Frequency of Visits 171
18 Findings for P6: TLM Brand Attractiveness Configurations Without and with Demographics Indicating High and Low Expenditures 175
19 Findings for P7: Sustainability Dimensions and Brand Attractiveness Predicting TLM Visits and Not Visits 176
20 Findings for P7: Sustainability Dimensions and Brand Attractiveness Predicting High Versus Low Shopper TLM Expenditures 180
21 Findings for the Deductive Models 183
21.1 Model 1 Findings: Age?Marital?Income?~Gender?Satisfy ? Visit 183
21.2 Findings for Model 2: A?~G?I?E?~M ? V 184
21.3 Findings for Model 3: ~A•~G•I•~E•~M ? V 184
21.4 Findings for Model 4: A•G•~I•E•~M ? ~V 184
21.5 Findings for Model 5: ~A•~G•~I•~E•M ? ~V 184
21.6 Findings for Model 6: Social•Economic•Culture•Environmental ? Trust 185
21.7 Findings for Model 7: Social•Economic•Culture ? Trust 185
21.8 Findings for Model 8: Social•Economic•Culture ? Image 186
21.9 Findings for Model 9: ~Social•~Economic•~Culture•~Environmental ? ~Trust 186
21.10 Findings for Model 10: Social•Economic•Culture•Environmental ? Visits 187
21.11 Findings for Model 11: Social•Economic•Culture•Environmental ? Expenditures 188
21.12 Findings for Model 12: ~Social•~Economic•~Culture•~Environmental ? ~Visits 189
21.13 Findings for Model 13: ~Social•~Economic•~Culture•~Environmental ? ~Expenditures 189
22 Discussion and Limitations 189
22.1 Limitations and Suggestions for Future Research 190
23 Contributions to Theory and TLM Management Practice 191
References 192
Chapter 6: Cultures’ Outcomes on Entrepreneurship, Innovation, and National Quality of Life 195
1 Introduction 196
2 Culture as a Complex Whole 196
3 Need Motivations and Entrepreneurship 198
4 Complexity Theory 200
5 The Updated General Theory of Complex Wholes of Culture and Motives Influencing Entrepreneurial Behavior and Quality of Life 203
5.1 The First Proposition (P1): Cultural Value Configurations Indicate Motivational Needs 205
5.2 P2: Need Configurations Indicate Entrepreneur Behavior (EB) 205
5.3 P3): Religiosity Embeds in Cultural Values Configurations 205
5.4 P4: Religiosity Indicates Need Motivations Individually 205
5.5 P5: Configurations of the Three Need Motivations Indicate Nations Low/High in QOL 206
5.6 P6: Cultural Value Configurations/Religiosity Indicates Nations Low Versus High in EB 206
5.7 P7: Cultural Value Configurations Indicate Nations Low Versus High in (a) QOL and (b) Corruption 207
5.8 P8: Entrepreneur Behavior (EB) Configurations Indicate High/Low QOL and Corruption 207
5.9 P9: High Ethical Behavior Indicates High QOL 207
6 Method 208
6.1 Schwartz’s Cultural Values Typologies 208
6.2 McClelland’s Need Motivations 209
6.3 Religiosity 210
6.4 Entrepreneur Behavior 211
6.5 Quality of Life Metric 212
6.6 Ethical Behavior and Corruption Metric 213
6.7 Analysis: Calibration Procedure 213
6.8 Computing with Words (CWW) for a Membership Score for a Configuration 213
6.9 Predicting the Impact of Antecedent Configuration Conditions on Outcomes 214
7 Findings 214
7.1 The US Need Motivation Model: Findings for Model 1—nAch?nAff?nPow ? EB 215
7.2 The “Danish Need Motivation Model”: Findings for Model 2—~nAch? nAff ?~nPow ? EB 215
7.3 Findings for the German Need Motivations’ Configuration Model 215
7.4 The Findings for Model 3: ~nAch?~nAff?nPow ? ~ EB, ~QOL 217
7.5 Findings for (P1): Cultural Value Configurations Indicate Motivational Needs 218
7.6 The Findings Support P2: Need Motivation Configurations Indicate Entrepreneur Behavior 221
7.7 Do Complex Configurations of Need Motivations and GEM and GEDI Indicate High GII? 224
7.8 P3 and P4: Schwartz Cultural Value Configurations, Religiosity, and Need Motivations 225
7.9 P5 Findings: Need Motivation Configurations Indicating High/Low QOL 225
7.10 P6 Findings: Cultural Value Configurations Indicate High (Low) Entrepreneur Behavior 227
7.11 The Findings Support P7a: Religiosity Embeds in Cultural Values Configurations Indicates High (Low) QOL 230
7.12 The Findings Support P7B: Religiosity Embeds in Cultural Values Configurations Indicates High Ethical Behavior or High Corruption 231
7.13 The Findings Support P8: GEM, GEDI, and GII Models Indicate High (Low) QOL 233
7.14 The Findings Support P9: Nations High in Ethical Behavior Are High in QOL 235
7.15 Entrepreneur Behavior Predicting the Complex Outcome: QOL?Ethical Behavior 237
8 Discussion of Contributions to Theory and Limitations 239
8.1 Schwartz’ Cultural Values Theory Is Useful for Understanding/Predicting Outcomes 239
8.2 McClelland’s Need Motivation Theory Is Useful for Understanding/Predicting Outcomes 241
8.3 Entrepreneurship, Ethical Behavior, and Quality of Life 242
8.4 Religiosity, EB, QOL, and Corruption 242
8.5 Limitations 243
9 Recommendations for National Policies and Conclusions 244
9.1 Revising National Cultural Value and Need Motivation Configurations 244
9.2 Nurturing Change in Need Motivation Configurations 246
9.3 Nurturing Entrepreneurship Activities 246
9.4 Ethical Behavior Versus Corruption 247
9.5 Conclusion 247
Appendix A: Schwartz’s Cultural Values Data 248
Appendix B: National Data for Religiosity McClelland’s nAch, nAff, and nPow
Appendix C: Configurations of Need Motivation Indicating Nations High in Ethical Behavior Versus High in Corruption 251
Appendix D: Schwartz’s Cultural Values and Religiosity Indicating High (Low) nAch 251
Appendix E: The Findings Support P3 for nAff: Religiosity Embeds in Cultural Values Configurations Indicating nAff and the Negation of nAff 252
Appendix F: The Findings Support P3 for nPow: Religiosity Embeds in Cultural Values Configurations for nPow and the Negation of nPow 253
References 253
Author Index 257
Subject Index 262
Erscheint lt. Verlag | 15.11.2019 |
---|---|
Zusatzinfo | XVII, 255 p. 44 illus., 39 illus. in color. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik |
Wirtschaft ► Allgemeines / Lexika | |
Wirtschaft ► Betriebswirtschaft / Management ► Logistik / Produktion | |
Schlagworte | Asymmetric • case-level • computing-with-words • Configurations • Forecasting • outcomes • predictive validation |
ISBN-10 | 3-030-26818-7 / 3030268187 |
ISBN-13 | 978-3-030-26818-3 / 9783030268183 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 6,7 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich