Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Topics in Infinitely Divisible Distributions and Lévy Processes, Revised Edition (eBook)

eBook Download: PDF
2019 | 1st ed. 2019
VIII, 135 Seiten
Springer International Publishing (Verlag)
978-3-030-22700-5 (ISBN)

Lese- und Medienproben

Topics in Infinitely Divisible Distributions and Lévy Processes, Revised Edition - Alfonso Rocha-Arteaga, Ken-iti Sato
Systemvoraussetzungen
64,19 inkl. MwSt
(CHF 62,70)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book deals with topics in the area of Lévy processes and infinitely divisible distributions such as Ornstein-Uhlenbeck type processes, selfsimilar additive processes and multivariate subordination. These topics are developed around a decreasing chain of classes of distributions Lm, m = 0,1,...,?, from the class L0 of selfdecomposable distributions to the class L? generated by stable distributions through convolution and convergence.

The book is divided into five chapters. Chapter 1 studies basic properties of Lm classes needed for the subsequent chapters.  Chapter 2 introduces Ornstein-Uhlenbeck type processes generated by a Lévy process through stochastic integrals based on Lévy processes. Necessary and sufficient conditions are given for a generating Lévy process so that the OU type process has a limit distribution of Lm class.

Chapter 3 establishes the correspondence between selfsimilar additive processes and selfdecomposable distributions and makes a close inspection of the Lamperti transformation, which transforms selfsimilar additive processes and stationary type OU processes to each other.  

Chapter 4 studies multivariate subordination of a cone-parameter Lévy process by a cone-valued Lévy process.  Finally, Chapter 5 studies strictly stable and Lm properties inherited by the subordinated process in multivariate subordination.

In this revised edition, new material is included on advances in these topics. It is rewritten as self-contained as possible. Theorems, lemmas, propositions, examples and remarks were reorganized; some were deleted and others were newly added. The historical notes at the end of each chapter were enlarged.

This book is addressed to graduate students and researchers in probability and mathematical statistics who are interested in learning more on Lévy processes and infinitely divisible distributions.

 


Erscheint lt. Verlag 2.11.2019
Reihe/Serie SpringerBriefs in Probability and Mathematical Statistics
SpringerBriefs in Probability and Mathematical Statistics
Zusatzinfo VIII, 135 p.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Cone-parameter convolution semigroups • Cone-parameter Lévy processes • infinitely divisible distributions • Lamperti transformation • Lévy processes • Ornstein--Uhlenbeck type processes • Selfdecomposable distributions • Selfsimilar additive processes • Stochastic integral respect to Lévy processes • Subordination
ISBN-10 3-030-22700-6 / 3030227006
ISBN-13 978-3-030-22700-5 / 9783030227005
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich