Beginning Anomaly Detection Using Python-Based Deep Learning (eBook)
XVI, 416 Seiten
Apress (Verlag)
978-1-4842-5177-5 (ISBN)
- Understand what anomaly detection is and why it is important in today's world
- Become familiar with statistical and traditional machine learning approaches to anomaly detection using Scikit-Learn
- Know the basics of deep learning in Python using Keras and PyTorch
- Be aware of basic data science concepts for measuring a model's performance: understand what AUC is, what precision and recall mean, and more
- Apply deep learning to semi-supervised and unsupervised anomaly detection
Utilize this easy-to-follow beginner's guide to understand how deep learning can be applied to the task of anomaly detection. Using Keras and PyTorch in Python, the book focuses on how various deep learning models can be applied to semi-supervised and unsupervised anomaly detection tasks.This book begins with an explanation of what anomaly detection is, what it is used for, and its importance. After covering statistical and traditional machine learning methods for anomaly detection using Scikit-Learn in Python, the book then provides an introduction to deep learning with details on how to build and train a deep learning model in both Keras and PyTorch before shifting the focus to applications of the following deep learning models to anomaly detection: various types of Autoencoders, Restricted Boltzmann Machines, RNNs & LSTMs, and Temporal Convolutional Networks. The book explores unsupervised and semi-supervised anomaly detection along with the basics oftime series-based anomaly detection.By the end of the book you will have a thorough understanding of the basic task of anomaly detection as well as an assortment of methods to approach anomaly detection, ranging from traditional methods to deep learning. Additionally, you are introduced to Scikit-Learn and are able to create deep learning models in Keras and PyTorch.What You Will LearnUnderstand what anomaly detection is and why it is important in today's worldBecome familiar with statistical and traditional machine learning approaches to anomaly detection using Scikit-LearnKnow the basics of deep learning in Python using Keras and PyTorchBe aware of basic data science concepts for measuring a model's performance: understand what AUC is, what precision and recall mean, and moreApply deep learning to semi-supervised and unsupervised anomaly detectionWho This Book Is ForData scientists and machine learning engineers interested in learning the basics of deep learning applications in anomaly detection
Erscheint lt. Verlag | 10.10.2019 |
---|---|
Zusatzinfo | XVI, 416 p. 530 illus. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | Anamoly Detection • Auto Encoders • Deep learning • fraud detection • Keras • Novelty detection • Python • PyTorch • semi-supervised • unsupervised |
ISBN-10 | 1-4842-5177-6 / 1484251776 |
ISBN-13 | 978-1-4842-5177-5 / 9781484251775 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich