Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Statistical Inference via Convex Optimization (eBook)

eBook Download: PDF
2020
656 Seiten
Princeton University Press (Verlag)
978-0-691-20031-6 (ISBN)

Lese- und Medienproben

Statistical Inference via Convex Optimization - Anatoli Juditsky, Arkadi Nemirovski
Systemvoraussetzungen
109,99 inkl. MwSt
(CHF 107,45)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This authoritative book draws on the latest research to explore the interplay of high-dimensional statistics with optimization. Through an accessible analysis of fundamental problems of hypothesis testing and signal recovery, Anatoli Juditsky and Arkadi Nemirovski show how convex optimization theory can be used to devise and analyze near-optimal statistical inferences.Statistical Inference via Convex Optimization is an essential resource for optimization specialists who are new to statistics and its applications, and for data scientists who want to improve their optimization methods. Juditsky and Nemirovski provide the first systematic treatment of the statistical techniques that have arisen from advances in the theory of optimization. They focus on four well-known statistical problems-sparse recovery, hypothesis testing, and recovery from indirect observations of both signals and functions of signals-demonstrating how they can be solved more efficiently as convex optimization problems. The emphasis throughout is on achieving the best possible statistical performance. The construction of inference routines and the quantification of their statistical performance are given by efficient computation rather than by analytical derivation typical of more conventional statistical approaches. In addition to being computation-friendly, the methods described in this book enable practitioners to handle numerous situations too difficult for closed analytical form analysis, such as composite hypothesis testing and signal recovery in inverse problems.Statistical Inference via Convex Optimization features exercises with solutions along with extensive appendixes, making it ideal for use as a graduate text.
Erscheint lt. Verlag 7.4.2020
Reihe/Serie Princeton Series in Applied Mathematics
Princeton Series in Applied Mathematics
Zusatzinfo 40 b/w illus.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Mathematik / Informatik Mathematik Statistik
Schlagworte Accuracy and precision • Affine space • All of Nonparametric Statistics • Approximation • Asymptotic Methods in Statistical Decision Theory • Bayesian • Bias of an estimator • Binary search algorithm • bisection algorithm • Bounded set (topological vector space) • Candidate solution • Change detection • Characteristic function (probability theory) • compressed sensing • Computation • computational complexity theory • concave function • conditional expectation • Conditional probability distribution • conic programming • Convergence of random variables • Convex cone • convex function • convex hull • Convex Optimization • convex set • Convex sets • Covariance matrix • Dantzig selector • Differentiable function • Dimension (vector space) • Discrete Cosine Transform • Duality • Duality (optimization) • ell-1-norm minimization • Empirical probability • Error analysis (Mathematics) • Error Function • Estimating Functions • estimation • Estimation theory • Estimator • Function (mathematics) • gaussian noise • Gaussian observations • Has'minskii • Hellinger distance • Ibragimov • Independence (probability theory) • Inequality (mathematics) • inference • Infimum and supremum • Introduction to Nonparametric Estimation • Invertible matrix • Joint probability distribution • Lagrange duality • lasso selector • Least Squares • Le Cam • Likelihood Function • Linear dynamical system • Linear Function • Linear Inequality • Linear map • Linear Matrix Inequality • Linear Programming • linear regression • Lipschitz continuity • Logistic Regression • Mathematical Induction • Mathematical Optimization • mathematical practice • Maxima and minima • Measure (mathematics) • Measurement • Minimization • Moment-generating function • Moment (mathematics) • Monte Carlo Method • Multivariate normal distribution • N-convex function • Non-linear least squares • Nonparametric regression • Nonparametric Statistics • Norm (mathematics) • NP-hardness • Observational error • optimization problem • Parameter • Parametric family • Poisson distribution • Preference (economics) • Probability • Probability Distribution • Probability of error • Probability space • Probability Theory • Proportionality (mathematics) • P versus NP problem • random matrix • Random Variable • Rate of Convergence • rectangle • Restricted isometry property • saddle points • Sampling (Statistics) • signal plus noise • signal-to-noise • singular value decomposition • Sparse matrix • Statistical estimation • Statistical hypothesis testing • Statistical Inference • statistical significance • Statistics • stochastic approximation • Stochastic matrix • stochastic optimization • Subset • Tsybakov • Uniform distribution (discrete) • unobserved signal • Upper and lower bounds • Variable (mathematics) • Variable selection • Variational inequality • Wasserman
ISBN-10 0-691-20031-9 / 0691200319
ISBN-13 978-0-691-20031-6 / 9780691200316
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Trigonometrie, Analytische Geometrie, Algebra, Wahrscheinlichkeit

von Walter Strampp

eBook Download (2024)
De Gruyter (Verlag)
CHF 92,75
Angewandte Analysis im Bachelorstudium

von Michael Knorrenschild

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
CHF 34,15

von Siegfried Völkel; Horst Bach; Jürgen Schäfer …

eBook Download (2024)
Carl Hanser Verlag GmbH & Co. KG
CHF 34,15