Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Optimisation Algorithms for Hand Posture Estimation - Shahrzad Saremi, Seyedali Mirjalili

Optimisation Algorithms for Hand Posture Estimation (eBook)

eBook Download: PDF
2019 | 1st ed. 2020
XV, 205 Seiten
Springer Singapore (Verlag)
978-981-13-9757-8 (ISBN)
Systemvoraussetzungen
90,94 inkl. MwSt
(CHF 88,85)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book reviews the literature on hand posture estimation using generative methods, identifying the current gaps, such as sensitivity to hand shapes, sensitivity to a good initial posture, difficult hand posture recovery in cases of loss in tracking, and lack of addressing multiple objectives to maximize accuracy and minimize computational cost. To fill these gaps, it proposes a new 3D hand model that combines the best features of the current 3D hand models in the literature. It also discusses the development of a hand shape optimization technique. To find the global optimum for the single-objective problem formulated, it improves and applies particle swarm optimization (PSO), one of the most highly regarded optimization algorithms and one that is used successfully in both science and industry. After formulating the problem, multi-objective particle swarm optimization (MOPSO) is employed to estimate the Pareto optimal front as the solution for this bi-objective problem. The book also demonstrates the effectiveness of the improved PSO in hand posture recovery in cases of tracking loss. Lastly, the book examines the formulation of hand posture estimation as a bi-objective problem for the first time.

The case studies included feature 50 hand postures extracted from five standard datasets, and were used to benchmark the proposed 3D hand model, hand shape optimization, and hand posture recovery.


Dr. Shahrzad Saremi is a lecturer at Griffith College, Griffith University, Australia. She received her BA in Information Technology from the Malaysian Multi Media University and M.Sc in Interaction Design from the University of Queensland. Dr. Saremi has published more than 20 articles in high-impact journals. Her main research interests include machine learning, optimization, human-computer interaction, augmented reality and gesture detection.

Dr. Seyedali Mirjalili is a lecturer at Griffith College, Griffith University and internationally recognized for his advances in nature-inspired Artificial Intelligence (AI) techniques. He is the author of five books, 100 journal articles, 20 conference papers, and 20 book chapters. With over 10000 citations and H-index of 40, he is one of the most influential AI researchers in the world.  From Google Scholar metrics, he is globally the 3rd most cited researcher in Engineering Optimisation and Robust Optimisation using AI techniques. He has been the keynote speaker of several international conferences and is serving as an associate editor of top AI journals including Applied Soft Computing, Applied Intelligence, IEEE Access, Advances in Engineering Software, and Applied Intelligence.


This book reviews the literature on hand posture estimation using generative methods, identifying the current gaps, such as sensitivity to hand shapes, sensitivity to a good initial posture, difficult hand posture recovery in cases of loss in tracking, and lack of addressing multiple objectives to maximize accuracy and minimize computational cost. To fill these gaps, it proposes a new 3D hand model that combines the best features of the current 3D hand models in the literature. It also discusses the development of a hand shape optimization technique. To find the global optimum for the single-objective problem formulated, it improves and applies particle swarm optimization (PSO), one of the most highly regarded optimization algorithms and one that is used successfully in both science and industry. After formulating the problem, multi-objective particle swarm optimization (MOPSO) is employed to estimate the Pareto optimal front as the solution for this bi-objective problem. The book also demonstrates the effectiveness of the improved PSO in hand posture recovery in cases of tracking loss. Lastly, the book examines the formulation of hand posture estimation as a bi-objective problem for the first time.The case studies included feature 50 hand postures extracted from five standard datasets, and were used to benchmark the proposed 3D hand model, hand shape optimization, and hand posture recovery.
Erscheint lt. Verlag 26.8.2019
Reihe/Serie Algorithms for Intelligent Systems
Algorithms for Intelligent Systems
Zusatzinfo XV, 205 p. 108 illus., 99 illus. in color.
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Technik
Schlagworte 3D hand model • Hand Gesture Detection • Hand Modelling • Hand Posture Estimation • multi-objective particle swarm optimization • Particle swarm optimization
ISBN-10 981-13-9757-0 / 9811397570
ISBN-13 978-981-13-9757-8 / 9789811397578
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 12,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
CHF 37,95