Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Abstract Band Method via Factorization, Positive and Band Extensions of Multivariable Almost Periodic Matrix Functions, and Spectral Estimation (eBook)

(Autor)

eBook Download: PDF

71 Seiten
American Mathematical Society (Verlag)
978-1-4704-0360-7 (ISBN)
Systemvoraussetzungen
86,38 inkl. MwSt
(CHF 84,35)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
New versions are developed of an abstract scheme, which are designed to provide a framework for solving a variety of extension problems. The abstract scheme is commonly known as the band method. The main feature of the new versions is that they express directly the conditions for existence of positive band extensions in terms of abstract factorizations (with certain additional properties). The results allow us to prove, among other things, that the band extension is continuous in an appropriate sense. Using the new versions of the abstract band method, we solve the positive extension problem for almost periodic matrix functions of several real variables with Fourier coefficients indexed in a given additive subgroup of the space of variables. This generality allows us to treat simultaneously many particular cases, for example the case of functions periodic in some variables and almost periodic in others. Necessary and sufficient conditions are given for the existence of positive extensions in terms of Toeplitz operators on Besikovitch spaces. Furthermore, when a solution exists a special extension (the band extension) is constructed which enjoys a maximum entropy property. A linear fractional parameterization of the set of all extensions is also provided. We interpret the obtained results (in the periodic case) in terms of existence of a multivariate autoregressive moving averages (ARMA) process with given autocorrelation coefficients, and identify its maximal prediction error. Another application concerns the solution of the positive extension problem in the context of Wiener algebra of infinite operator matrices. It includes the identification of the maximum entropy extension and a description of all positive extensions via a linear fractional formula. In the periodic case it solves a linear estimation problem for cyclostationary stochastic processes.
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
ISBN-10 1-4704-0360-9 / 1470403609
ISBN-13 978-1-4704-0360-7 / 9781470403607
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich