Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Mutually Beneficial Relationship of Graphs and Matrices (eBook)

eBook Download: PDF
2011
96 Seiten
American Mathematical Society (Verlag)
978-1-4704-1573-0 (ISBN)
Systemvoraussetzungen
55,19 inkl. MwSt
(CHF 53,90)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Graphs and matrices enjoy a fascinating and mutually beneficial relationship. This interplay has benefited both graph theory and linear algebra. In one direction, knowledge about one of the graphs that can be associated with a matrix can be used to illuminate matrix properties and to get better information about the matrix. Examples include the use of digraphs to obtain strong results on diagonal dominance and eigenvalue inclusion regions and the use of the Rado-Hall theorem to deduce properties of special classes of matrices. Going the other way, linear algebraic properties of one of the matrices associated with a graph can be used to obtain useful combinatorial information about the graph. The adjacency matrix and the Laplacian matrix are two well-known matrices associated to a graph, and their eigenvalues encode important information about the graph. Another important linear algebraic invariant associated with a graph is the Colin de Verdiere number, which, for instance, characterizes certain topological properties of the graph. This book is not a comprehensive study of graphs and matrices. The particular content of the lectures was chosen for its accessibility, beauty, and current relevance, and for the possibility of enticing the audience to want to learn more.
Erscheint lt. Verlag 7.6.2011
Themenwelt Mathematik / Informatik Mathematik Graphentheorie
ISBN-10 1-4704-1573-9 / 1470415739
ISBN-13 978-1-4704-1573-0 / 9781470415730
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Eiichi Bannai; Etsuko Bannai; Tatsuro Ito; Rie Tanaka

eBook Download (2021)
Walter de Gruyter GmbH & Co.KG (Verlag)
CHF 146,50