Ideal Spaces
Seiten
1997
|
1997
Springer Berlin (Verlag)
978-3-540-63160-6 (ISBN)
Springer Berlin (Verlag)
978-3-540-63160-6 (ISBN)
Ideal spaces are a very general class of normed spaces of measurable functions, which includes e.g. Lebesgue and Orlicz spaces. Their most important application is in functional analysis in the theory of (usual and partial) integral and integro-differential equations. The book is a rather complete and self-contained introduction into the general theory of ideal spaces. Some emphasis is put on spaces of vector-valued functions and on the constructive viewpoint of the theory (without the axiom of choice). The reader should have basic knowledge in functional analysis and measure theory.
Introduction.- Basic definitions and properties.- Ideal spaces with additional properties.- Ideal spaces on product measures and calculus.- Operators and applications.- Appendix: Some measurability results.- Sup-measurable operator functions.- Majorising principles for measurable operator functions.- A generalization of a theorem of Luxemburg-Gribanov.- References.- Index.
Erscheint lt. Verlag | 17.7.1997 |
---|---|
Reihe/Serie | Lecture Notes in Mathematics |
Zusatzinfo | VI, 150 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 234 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Logik / Mengenlehre | |
Schlagworte | Addition • Axiom of choice • Banach functions spaces • Calculus • Equation • Function • Functional Analysis • ideal spaces • Koethe spaces • Raum • space of measurable functions • Theorem • vector-valued functions |
ISBN-10 | 3-540-63160-7 / 3540631607 |
ISBN-13 | 978-3-540-63160-6 / 9783540631606 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 83,90