Data Mining for Scientific and Engineering Applications
Springer-Verlag New York Inc.
978-1-4020-0114-7 (ISBN)
Audience: This work would be an excellent text for students and researchers who are familiar with the basic principles of data mining and want to learn more about the application of data mining to their problem in science or engineering.
1 On Mining Scientific Datasets.- 2 Understanding High Dimensional And Large Data Sets: Some Mathematical Challenges And Opportunities.- 3 Data Mining At The Interface of Computer Science and Statistics.- 4 Mining Large Image Collections.- 5 Mining Astronomical Databases.- 6 Searching for Bent-Double Galaxies in The First Survey.- 7 A Dataspace Infrastructure for Astronomical Data.- 8 Data Mining Applications in Bioinformatics.- 9 Mining Residue Contacts in Proteins.- 10 Kdd Services at The Goddard Earth Sciences Distributed Archive Center.- 11 Data Mining in Integrated Data Access and Data Analysis Systems.- 12 Spatial Data Mining For Classification, Visualisation And Interpretation With Artmap Neural Network.- 13 Real Time Feature Extraction for The Analysis of Turbulent Flows.- 14 Data Mining for Turbulent Flows.- 15 Evita-Efficient Visualization and Interrogation of Tera-Scale Data.- 16 Towards Ubiquitous Mining of Distributed Data.- 17 Decomposable Algorithms for Data Mining.- 18 HDDI™: Hierarchical Distributed Dynamic Indexing.- 19 Parallel Algorithms for Clustering High-Dimensional Large-Scale Datasets.- 20 Efficient Clustering of Very Large Document Collections.- 21 A Scalable Hierarchical Algorithm for Unsupervised Clustering.- 22 High-Performance Singular Value Decomposition.- 23 Mining High-Dimensional Scientific Data Sets Using Singular Value Decomposition.- 24 Spatial Dependence in Data Mining.- 25 Sparc: Spatial Association Rule-Based Classification.- 26 What’s Spatial about Spatial Data Mining: Three Case Studies.- 27 Predicting Failures in Event Sequences.- 28 Efficient Algorithms for Mining Long Patterns In Scientific Data Sets.- 29 Probabilistic Estimation in Data Mining.- 30 Classification Using Associationrules: Weaknesses And Enhancements.
Erscheint lt. Verlag | 31.10.2001 |
---|---|
Reihe/Serie | Massive Computing ; 2 |
Zusatzinfo | XX, 605 p. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 160 x 240 mm |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Informatik ► Theorie / Studium ► Algorithmen | |
ISBN-10 | 1-4020-0114-2 / 1402001142 |
ISBN-13 | 978-1-4020-0114-7 / 9781402001147 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich