Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Credit Data and Scoring

The First Triumph of Big Data and Big Algorithms

(Autor)

Buch | Softcover
274 Seiten
2020
Academic Press Inc (Verlag)
978-0-12-818815-6 (ISBN)
CHF 137,85 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Credit Data and Scoring: The First Triumph of Big Data and Big Algorithms illuminates the often-hidden practice of predicting an individual’s economic responsibility. Written by a leading practitioner, it examines the international implications of US leadership in credit scoring and what other countries have learned from it in building their own systems. Through its comprehensive contemporary perspective, the book also explores how algorithms and big data are driving the future of credit scoring. By revealing a new big picture and data comparisons, it delivers useful insights into legal, regulatory and data manipulation.

Eric Rosenblatt has worked in the mortgage industry, mainly the credit side, for thirty years, most of it (since 2000) as a Vice President at Fannie Mae. He received a Ph.D. in Finance in 1994. At Fannie Mae he was known for his management of Credit Risk analytics (including credit report models), his correct call of the housing recession, and for what Fannie called Innovation: applications and models which integrated data and made credit, fraud, and home valuation decisions. One of these applications, Collateral Underwriter, is used by all lenders and appraisal management companies. Another is a credit scoring model that treats people that pay their credit card balances (transactors) differently than people that do not (revolvers). While at Fannie Mae he published 19 papers and was granted 13 patents.

1. When Our Reputation Became our Score2. The Credit Industry3. CRAs - Losing Battles to Win the War4. My Credit Report5. Historic Complaints about Credit Accuracy6. Differences in Credit Data Between Bureaus7. Differences in Credit Scores between Bureaus8. The Mystery of Credit Scores9. Making a Credit Score10. Picking the y Variable, Picking the x Variables11. Calculating Weight of Evidence and Information Value12. Regressions13. Getting a Good Model14. Data Flows: The Road to Attributes and Scores15. The War Between Individuals and Algorithms16. Protecting Data17. About the Authors

Appendix1. Credit Laws / Data Laws2. My Credit Report

Erscheinungsdatum
Verlagsort San Diego
Sprache englisch
Maße 152 x 229 mm
Gewicht 520 g
Themenwelt Informatik Theorie / Studium Algorithmen
Wirtschaft Betriebswirtschaft / Management Finanzierung
Betriebswirtschaft / Management Spezielle Betriebswirtschaftslehre Bankbetriebslehre
Wirtschaft Betriebswirtschaft / Management Unternehmensführung / Management
Wirtschaft Volkswirtschaftslehre Makroökonomie
ISBN-10 0-12-818815-4 / 0128188154
ISBN-13 978-0-12-818815-6 / 9780128188156
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media

von Jens Gallenbacher

Buch | Softcover (2021)
Springer (Verlag)
CHF 41,95
Interlingua zur Gewährleistung semantischer Interoperabilität in der …

von Josef Ingenerf; Cora Drenkhahn

Buch | Softcover (2023)
Springer Fachmedien (Verlag)
CHF 46,15