Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Aviation System Risks and Safety -  Kuklev E.A.,  Shapkin V.S.,  Filippov V.L.,  Shatrakov Y.G.

Aviation System Risks and Safety (eBook)

eBook Download: PDF
2019 | 1st ed. 2019
XXIV, 167 Seiten
Springer Singapore (Verlag)
978-981-13-8122-5 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book provides a solution to 'rare event' problems without using the classical theory of reliability and theory of probability. This solution is based on the methodology of risk assessment as 'measure of danger' (in keeping with the ICS RAS) and an expert approach to determining systems' safety indications using Fuzzy Sets methods. Further, the book puts forward a new concept: 'Reliability, Risks, and Safety' (RRS). 

The book's main goal is to generalize present results and underscore the need to develop an alternative approach to safety level assessment and risk management for technical (aviation) systems in terms of Fuzzy Sets objects, in addition to traditional probabilistic safety analysis (PSA). The concept it proposes incorporates ICAO recommendations regarding proactive system control and the system's responses to various internal and external disturbances. 

Kuklev E.A., Professor, Doctor of Technical Sciences, was born in 1934; and graduated from the Kazan Aviation Institute (majoring in 'aircraft construction'). He is an Honored Worker of the Higher School of Russia, Laureate of the commemorative medal of the Vietnamese People's Republic (2018) for his services in the preparation of scientific aviation personnel (candidates of Technical Sciences) and for the implementation of scientific and technical projects for civil aviation in Vietnam, Head of the Mechanics department of St. Petersburg State University, and Director of the Center for Expertise and Scientific Support of Projects in St. Petersburg State University. Earlier, he was the vice-rector for research in St. Petersburg State University of Civil Aviation. He is the author of more than 300 scientific papers and inventions in the aviation field, including those for development of air transport standards, with activity management standards for transportation of goods on the external load suspension of helicopters in the interaction of helicopter groups based on ICAO requirements. 

Shapkin V.S., Professor, Doctor of Technical Sciences, graduated from Moscow Institute of Civil Aviation Engineers (1984). He is a Laureate of the Russian Federation Government Prize in Science and Technology, an Honored Transport Worker of the Russian Federation, and Director General of FSUE State Research Institute of Civil Aviation (FSUE GosNII GA). He is also an Expert of the Federal Air Transport Agency, Federal Service on supervision in the sphere of transport of the Russian Ministry of Transport, and the Interstate Aviation Committee. His area of specialisation includes air transport and aircraft strength. He is also the author of more than 200 scientific works. 

Filippov V.L., Acting General Director of FSUE State Research Institute of Civil Aviation, Actual State Councillor of Russian Federation, graduated from Syzran Air Force Aviation School, Gagarin Air Force Academy. He is a specialist in aeronautical activity and a Class 1 military pilot.

Shatrakov Y.G., Professor, Doctor of Technical Sciences, Honored Science Worker of Russia, RATS full member, graduated from Leningrad Institute of Aviation Instrumentation and Leningrad University (Physics and Mathematics Faculty). He defended his thesis in 1966. He published more 400 monographs and textbooks on radio navigation, radiolocation, production organization. He prepared more than 100 candidates and doctors of science as a scientific adviser and scientific consultant. Scientific directions founded under the guidance of Y.G. Shatrakov are as follows: relative radio navigation; increased noise immunity of angle measuring systems due to suppression of correlation errors and interference; secondary radiolocation by individual numbers; reduction of labor intensity in the production of radio electronic products due to the introduction of flexible automated productions. He is the author including 30 patents for inventions in the field of radio technical systems; scientific supervisor of international projects for the creation of the MLS with Thomson-CSF (1980-1988), with US enterprises for the creation of joint LRNSs (long-range radio technical navigation systems) (Tropic-Loran) (1984), chief designer of on-board antenna-feed systems; founder of the correlation interference theory in aviation radio technical complexes and systems.


This book provides a solution to "e;rare event"e; problems without using the classical theory of reliability and theory of probability. This solution is based on the methodology of risk assessment as "e;measure of danger"e; (in keeping with the ICS RAS) and an expert approach to determining systems' safety indications using Fuzzy Sets methods. Further, the book puts forward a new concept: "e;Reliability, Risks, and Safety"e; (RRS). The book s main goal is to generalize present results and underscore the need to develop an alternative approach to safety level assessment and risk management for technical (aviation) systems in terms of Fuzzy Sets objects, in addition to traditional probabilistic safety analysis (PSA). The concept it proposes incorporates ICAO recommendations regarding proactive system control and the system s responses to various internal and external disturbances. 

Preface 6
References 9
About This Book 10
Introduction 11
References 9
Contents 14
Abbreviations 22
1 Assessing the System Safety Using Reliability Theory and PSA Methods 24
1.1 Formation of Methods for Ensuring Reliability and Safety of Equipment as Quality Characteristics 24
1.2 Basic States of Facilities in the Reliability and Safety Analysis 25
1.3 Interrelationship Between the Categories of Reliability, Efficiency, and Safety of Complex Technical Systems in the Classical Reliability Theory 29
1.4 Structurally Complex Diagrams of the Technical System and Minimal Cut Sets of Failures 30
1.4.1 Methods for Assessing Reliability and Quality of Systems 30
1.4.2 Constructing a “Failure Tree” 31
1.5 Basic Principles of Ensuring Safety of Technical Systems Based on the Classical RT Methods 32
1.5.1 Use of Safety Barriers to Ensure Safety of Potentially Hazardous Facilities 32
1.5.2 Place and Role of Probabilistic Safety Analysis (PSA) in the RT 33
1.5.3 Identification of Risk Factors 33
1.5.4 International Standards in the Field of Safety Analysis and Evaluation (PSA) and Comments on Discrepancies in Language 33
1.5.5 Identification of Main Tasks of Probabilistic Safety Analysis 34
1.6 Analysis of Emergency Sequences When Assessing the Safety Level of Systems Using the PSA Method in the RT 37
1.6.1 Construction of “Event Trees” in the RT 37
1.6.2 Calculation of Risks in the RT as the Probability of Occurrence of a Negative Event 37
1.6.3 Analysis of the Results of Risk Calculation in the PSA Method 37
1.7 Failure Mode Effects and Criticality Analysis (FMECA) 38
1.7.1 General Provisions of Failure Mode Effects and Criticality Analysis for System Element Failures 38
1.7.2 Effect of the Failure Criticality on the Safety State of the System Processes 40
1.7.3 Examples of Known Catastrophes 40
1.8 Conclusions 41
References 42
2 New Doctrine “Reliability, Risk, Safety” for System Safety (Flight Safety) Assessment on The Basis of the Fuzzy Sets Approach 44
2.1 New Doctrine for Assessing Safety of Structurally Complex Aviation Technical Systems Using Fuzzy Subsets 44
2.2 Multicriteria Estimation of the Complex Quality Index on the Tuple of Parameters 45
2.2.1 Multicriteria Index and Alternative Methods 45
2.2.2 Main RRS General Provisions 46
2.2.3 General Methodical RRS Recommendations on the Development of Tools for Assessing Risks in Systems as “Measure of Hazard” 47
2.2.4 The Main Problems of the Classical RT 49
2.2.5 Possible Ways of Assessing System Safety Indicators with Risk-Based Methods 49
2.2.6 Relation of Some Parameters from RT and SF into SST 51
2.3 Generalized RT and SST Provisions in the RRS 54
2.3.1 Interpretations of the Initial Concepts of Risk on the Basis of the Games Theory (Differences in the Classical RT and SST Concepts) 56
2.3.2 Mathematical Basis of Risk Models as a “Risk Measure” (According to the RAS) 57
2.4 Mathematical Basis for the Definition of a Risk Event and an Integral Measure of Risk in the Probability Space 58
2.5 PSA and SST Safety (“Hazard”) and “Risk” Models 60
2.6 Comparison of RT and SST Quality and Safety Indicators 62
2.6.1 Estimation of Errors in the Experimental Determination of the Probability 62
2.6.2 Two-Dimensional Estimate of Risk Significance of an “Amount of Hazard” 64
2.7 Decision-Making Regarding Risks and Chances in Monitoring and Ensuring Safety in Civil Aviation 65
2.8 Baseline of the RT to SST Transition with “Fuzzy Subsets” of RT Events Such as Functional Failures 67
2.9 Possible Ways for Assessing the Safety Performance of Systems Based on the ICAO Methodology for Calculating Risks (Annex 19) 67
2.9.1 Area of Implementation and Standardization of the SST and RRS Provisions 70
2.9.2 Methodical Recommendations on the Applicability of RRS Provisions in SMSs 71
2.9.3 On the Applicability of the NASA (ICAO) Formula for the Definition of RMS Values for Random Variables 72
2.10 Conclusions 73
References 73
3 Solving the Rare Events Problem with the Fuzzy Sets Method 77
3.1 Axiomatics of Risk Models 77
3.1.1 Principle of a Fuzzy Implication in the Analysis of Fuzzy Statements 78
3.1.2 Formula and Definition of Risk Significance 79
3.2 Application of the Concept of Probability Spaces of the System Safety Theory in Fuzzy Risk Models 81
3.3 Assessing Significance of Risks in a Probability Space 82
3.4 Interpretations of Fuzziness for Subsets of Factors in Risk Analysis Procedures Based on ICAO Recommendations (from SMM-Doc 9859) 83
3.4.1 Effects of Pdf Fuzziness on Risk Indicators 83
3.4.2 Processes with Type 1 Pdfs (“Hard Tails” Type) 85
3.4.3 Type 2 Pdf with “Fuzziness” of the Pdf Function 86
3.4.4 Uncertainty of Pdf and Prdf in the NASA Experimental Results 87
3.5 Transition to Fuzzy Sets from the “Boolean Lattice” in the RT 89
3.5.1 Initial Conditions 89
3.5.2 Solving the Problem of the SST Transition from the Boolean Lattice to the Fuzzy Sets 90
3.6 General Scheme for Constructing Fuzzy Risk Models in ATSs 91
3.7 Analysis of the Basic RT Provisions Determined by the Hypothesis of the Existence of a “Hypercube” of Truth for Objects from Clear Sets 92
3.8 Basic Provisions of System Models in Fuzzy Sets 93
3.9 Algebra of the Events Logic in Catastrophic Scenarios 94
3.9.1 General Provisions Determining the Nature of Catastrophes 94
3.9.2 Use of Logical Algebra Functions (LAFs) for Evaluating the System Operability in the Reliability Theory (RT) and in the SST for the Construction of J. Reason Chains 95
3.10 Positions of the Classical Reliability Theory Based on the Hypercube of Truth 99
3.10.1 Universal Method for Formulation of the Classical Reliability Theory Fundamentals Using the Fuzzy Sets Positions 99
3.10.2 Initial Hypotheses of the Classical RT Defined on the Hypercube of Truth (on Boolean Lattice) 100
3.11 Determination of Paths to a Catastrophe Using the “Hypercube of Truth” Model for Values of the State of Physical Elements of the System from the Universal Set 101
3.11.1 Nature of the RT Postulates on the Independence of the Change in the State of Physical Elements of the System 101
3.11.2 Logical Equation of a “Catastrophe” (According to I. Ryabinin) for Events from Clear or Fuzzy Subsets 102
3.11.3 Concept of Constructing J. Reason Chains in Fuzzy Subsets of States in the SST Using the FMEA and CATS Approaches 103
3.11.4 CATS Concept (ICAO—“Netherlands”) 104
3.12 Formalized Models for Assessing Reliability and Safety of Systems with Discrete States 104
3.12.1 Initial Definitions of the S System 105
3.12.2 Functional Worthiness and Risks of Accident Occurrence in ATSs 106
3.12.3 Classification of Risk Events in the Space of Discrete States 107
3.13 Classifier of Risk Event Uncertainty Types 108
3.13.1 Definitions in the Uncertainty of Risk Events 108
3.13.2 Types of Information Uncertainty in SMSs 109
3.13.3 New Principles of Constructing SMSs in the Fuzzy Sets Class 111
3.13.4 General Scheme of Risk Identification in SMSs (with Fuzzy Sets) 112
3.13.5 Weighting Risks and Chances 112
3.13.6 Classifier of Information Uncertainty Types 114
3.13.7 Definitions and Principles of Constructing SMSs Based on Risk Calculation Models 116
3.14 Conclusions 118
References 119
4 Structure and Principles of Constructing the SMSs to Provide and Monitor System Safety Based on the RRS Risk Management Doctrine 122
4.1 Standard International Requirements to the SMS Structure 122
4.1.1 Key Definitions and Purpose of the SMS 122
4.1.2 Integrated “SMS–QMS” Modules (“Blue Folder”) 123
4.1.3 Main SMS Functions Recommended in Annex 19 124
4.2 Prediction of the Safety Level in the SMS for Complex Aviation Systems Using Risk Models for Critical Functional Failures 125
4.2.1 Triad of Management Actions in the SMS 125
4.2.2 Definition of Threats and Risks in SMSs 128
4.2.3 Use of Risk Analysis Matrices in Threats Analysis 128
4.2.4 Algorithm of the NASA Scenario for the Triad of Proactive and Predictive Safety Management for Aviation Activities by Means of SMSs (FO SMS–AA SMS) 130
4.2.5 ICAO and ISO Hazard Models in SMSs 130
4.3 Construction of a Generalized Safety Management System (SMS) 131
4.3.1 SMS Functions Based on the NASA Principles (for ICAO) 131
4.3.2 Principle of Constructing and Determining the Composition of the AA SMS (Type 2) Core 132
4.3.3 SMS Subsystems and Modules 133
4.3.4 Functional SMS Diagram and Computer Support of Procedures for Assessing Risks of Occurrence of Adverse Events on the Basis of the ICAO Methodology (SMM) 134
4.4 Methodological Basis for Solving the Problem of Estimating Residual Risk Taking into Account ILS Chains 135
4.4.1 State Regulation of AA Safety in Civil Aviation of Russia 135
4.4.2 Determination of Acceptable Risk Levels 136
4.5 Conclusions 138
References 138
5 Algorithms and Methods for ATS Safety Monitoring and Assurance Using Methods for Calculating Risks in the RRS Doctrine 140
5.1 Methodical Provisions for Assessing Aircraft Operation Safety 140
5.1.1 Definitions of Risk Varieties 140
5.1.2 Characteristics of Hazardous States of Systems 141
5.1.3 Methodical Provisions of “Preventive” (Proactive) Hazard Prediction in Order to Improve Flight Safety Based on Risk Management Through ATS Parameters Taking into Account Risk Factors 141
5.1.4 Methodological Provisions on the Relationship Between the Characteristics of Proactive and Active Methods for Assessing the Significance of Hazards and Risks for the Factors Database and the List of Hazards of a Particular Airline 142
5.2 Tools for Identifying and Estimating Risks in Solving the Rare Events Problem Within the New Doctrine “Reliability, Risks, Safety” 142
5.2.1 SST Tools. The List of Tools Includes the Following 142
5.2.2 Basic Principles of Flight Safety Management 143
5.2.3 Concept of Constructing J. Reason Chains in Fuzzy Subsets of ATS States 143
5.3 Determining and Assessing the Significance of Risk for Events from the Space of Binary Outcomes Using Risk Analysis Matrices 144
5.3.1 Types of Risk Matrices Per ICAO 144
5.3.2 Binary Partitions of the Outcome Space in the Risk Analysis Matrix 145
5.4 Methodology for Assessing the Degree of Risk in Comparison with the Level of Acceptable Risk 147
5.4.1 Initial Provisions of the Adopted Methodical Approach 147
5.4.2 Graded Classes of Fuzzy Risk Boundaries (“Granules”) 148
5.5 SST Application for Assessing ATS Safety Levels in the Class of Rare Events Using Classical RT and PSA Methods 149
5.6 Steps to Ensure the System Safety Level for ATSs and Dual-Purpose Equipment in Terms of “Risk” During the Life Cycle of the Product 149
5.6.1 Step 1. Creation of a Highly Reliable Technical System 150
5.6.2 Step 2. Identification of Paths Leading to a Catastrophe on the Basis of the Adopted Structural Connections of Reliability Elements 151
5.6.3 Formalized Models of System Structures Taking into Account Possible Failures Based on Models of the “Hypercube of Truth” 153
5.7 Model of Estimation of the Counterfeit Influence on ATS Safety in Fuzzy Sets 156
5.8 Analysis of the Combinatorics of HF Characteristics with the SHEL Interface 158
5.8.1 Statement of the Problem and the Solution Scheme 158
5.8.2 Coding of SHEL States 159
5.8.3 Risk Assessment Based on the SST (RRS) Algorithms 161
5.9 Layers of J. Reason Chains for Proactive Determination of the Preconditions for Aircraft Accidents in Flights 162
5.10 “Risk and Vulnerability Points, Vulnerability Intervals on ATC Trajectories with the “Vectoring” Method” (ICAO and Annex 19) 163
5.11 Conclusions—5 166
References 167
6 Assessing Safety of Dual-Purpose Systems 169
6.1 Recommendations of ICAO Amendment No. 101 Regarding the Requirements for the Development of SMSs (AA SMSs) for Industrial Production 169
6.1.1 Classifier of Industrial Safety Types in the System Safety Theory 170
6.2 Methodological Basis for Implementing the Recommendations of Amendment No. 101 on the Basis of ILS Principles 171
6.2.1 IS Monitoring Subsystems 171
6.2.2 Functions in the ILS System for Airbus Aircraft 173
6.3 Evaluation of the Prospects for Transition of Civil Aviation of the Russian Federation to the New IS Standards and Provision of After-Sales Services for Industrial Production (F1 Factor) and Operation of Equipment (F2 Factor) 174
6.3.1 Status of Development 174
6.3.2 Structure of the Set of Standards 175
6.4 MSG Strategy for the Development of a Maintenance and Repair Program (Reliability) for Western-Made Aircraft 175
6.4.1 Maintenance Program Structure 175
6.4.2 Aircraft Maintenance and Reliability Assurance Programs in MSG-1, MSG-3 176
6.5 Design Requirements for Ensuring Flight Safety of Helicopters with an External Cargo Sling Load System 178
6.5.1 Methodical Approach to the Formation of the Logistic Support System for the After-Sales Service of Ka-32 Helicopters 178
6.5.2 Recommendations for Helicopter SMS Development Strategy 179
6.6 Importance of the New RSS Ideology (Adopted in the SST for Flight Safety Evaluation) for Science and Practice in Comparison with Russian and Foreign Approaches to the Construction of Safety Management Systems Based on the Calculation of Risks 180
6.6.1 Assessment of the Significance of RRS Methods for Evaluation of ATS Operation Safety 180
6.6.2 List of Projects of Scientific and Technical Research on the Implementation of the SST Provisions in Flight Safety Management Systems 180
6.7 Conclusions 182
References 182
Conclusion 184

Erscheint lt. Verlag 9.7.2019
Reihe/Serie Springer Aerospace Technology
Springer Aerospace Technology
Zusatzinfo XXIV, 167 p. 32 illus., 20 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Technik Fahrzeugbau / Schiffbau
Technik Luft- / Raumfahrttechnik
Wirtschaft Betriebswirtschaft / Management
Schlagworte Acceptable risk levels • Aircraft exploitation safety estimation • Aviation risk management • Failure mode effects and criticality analysis (FMECA) • flight safety • Fuzzy sets method • ICAO recommendations • Probabilistic safety analysis (PSA) • Quality Control, Reliability, Safety and Risk • Risk calculation methodology • Safety management systems (SMS) • Theory of systemic safety (TSS)
ISBN-10 981-13-8122-4 / 9811381224
ISBN-13 978-981-13-8122-5 / 9789811381225
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Konzepte, Methoden, Lösungen und Arbeitshilfen für die Praxis

von Ernst Tiemeyer

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
CHF 68,35
Konzepte, Methoden, Lösungen und Arbeitshilfen für die Praxis

von Ernst Tiemeyer

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
CHF 68,35
Der Weg zur professionellen Vektorgrafik

von Uwe Schöler

eBook Download (2024)
Carl Hanser Verlag GmbH & Co. KG
CHF 29,30