Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Ordinary Differential Equations - Kenneth B. Howell

Ordinary Differential Equations

An Introduction to the Fundamentals
Buch | Hardcover
906 Seiten
2019 | 2nd edition
CRC Press (Verlag)
978-1-138-60583-1 (ISBN)
CHF 179,95 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
The Second Edition of this successful text is unique in its approach to motivation, precision, explanations and methods. Topics are introduced in a more accessible way then subsequent sections develop these further. Motivating the concepts, modeling, and technology are emphasized. An engaging writing style appeals to students.
The Second Edition of Ordinary Differential Equations: An Introduction to the Fundamentals builds on the successful First Edition. It is unique in its approach to motivation, precision, explanation and method. Its layered approach offers the instructor opportunity for greater flexibility in coverage and depth.

Students will appreciate the author’s approach and engaging style. Reasoning behind concepts and computations motivates readers. New topics are introduced in an easily accessible manner before being further developed later. The author emphasizes a basic understanding of the principles as well as modeling, computation procedures and the use of technology. The students will further appreciate the guides for carrying out the lengthier computational procedures with illustrative examples integrated into the discussion.

Features of the Second Edition:






Emphasizes motivation, a basic understanding of the mathematics, modeling and use of technology



A layered approach that allows for a flexible presentation based on instructor's preferences and students’ abilities



An instructor’s guide suggesting how the text can be applied to different courses



New chapters on more advanced numerical methods and systems (including the Runge-Kutta method and the numerical solution of second- and higher-order equations)



Many additional exercises, including two "chapters" of review exercises for first- and higher-order differential equations



An extensive on-line solution manual

About the author:

Kenneth B. Howell earned bachelor’s degrees in both mathematics and physics from Rose-Hulman Institute of Technology, and master’s and doctoral degrees in mathematics from Indiana University. For more than thirty years, he was a professor in the Department of Mathematical Sciences of the University of Alabama in Huntsville. Dr. Howell published numerous research articles in applied and theoretical mathematics in prestigious journals, served as a consulting research scientist for various companies and federal agencies in the space and defense industries, and received awards from the College and University for outstanding teaching. He is also the author of Principles of Fourier Analysis, Second Edition (Chapman & Hall/CRC, 2016).

Kenneth B. Howell earned bachelor degrees in both mathematics and physics from Rose-Hulman Institute of Technology, and master’s and doctoral degrees in mathematics from Indiana University. For more than thirty years, he was a professor in the Department of Mathematical Sciences of the University of Alabama in Huntsville (retiring in 2014). During his academic career, Dr. Howell published numerous research articles in applied and theoretical mathematics in prestigious journals, served as a consulting research scientist for various companies and federal agencies in the space and defense industries, and received awards from the College and University for outstanding teaching. He is also the author of Principles of Fourier Analysis (Chapman & Hall/CRC, 2001).

The Basics. The Starting Point: Basic Concepts and Terminology. Integration and Differential Equations. First-Order Equations. Some Basics about First-Order Equations.Separable First-Order Equations. Linear First-Order Equations. Simplifying Through Substitution. The Exact Form and General Integrating Factors. Slope Fields: Graphing Solutions Without the Solutions. Euler’s Numerical Method. The Art and Science of Modeling with First-Order Equations. Second- and Higher-Order Equations. Higher-Order Equations: Extending First-Order Concepts. Higher-Order Linear Equations and the Reduction of Order Method. General Solutions to Homogeneous Linear Differential Equations. Verifying the Big Theorems and an Introduction to Differential Operators. Second-Order Homogeneous Linear Equations with Constant Coefficients. Springs: Part I. Arbitrary Homogeneous Linear Equations with Constant Coefficients. Euler Equations. Nonhomogeneous Equations in General. Method of Undetermined Coefficients. Springs: Part II. Variation of Parameters.The Laplace Transform. The Laplace Transfrom (Intro). Differentiation and the Laplace Transform. The Inverse Laplace Transform. Convolution. Piecewise-Defined Functions and Periodic Functions. Delta Functions. Power Series and Modified Power Series Solutions. Series Solutions: Preliminaries. Power Series Solutions I: Basic Computational Methods. Power Series Solutions II: Generalizations and Theory.Modified Power Series Solutions and the Basic Method of Frobenius. The Big Theorem on the Frobenius Method, with Applications. Validating the Method of Frobenius. Systems of Differential Equations (A Brief Introduction). 35. Systems of Differential Equations: A Starting Point. Critical Points, Direction Fields and Trajectories.

Erscheinungsdatum
Reihe/Serie Textbooks in Mathematics
Zusatzinfo 28 Tables, black and white; 131 Illustrations, black and white
Verlagsort London
Sprache englisch
Maße 178 x 254 mm
Gewicht 1840 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
ISBN-10 1-138-60583-2 / 1138605832
ISBN-13 978-1-138-60583-1 / 9781138605831
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch (2022)
Springer Spektrum (Verlag)
CHF 109,95