Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Perturbed Gradient Flow Trees and A∞-algebra Structures in Morse Cohomology - Stephan Mescher

Perturbed Gradient Flow Trees and A∞-algebra Structures in Morse Cohomology

(Autor)

Buch | Softcover
XXV, 171 Seiten
2018 | 1. Softcover reprint of the original 1st ed. 2018
Springer International Publishing (Verlag)
978-3-030-09526-0 (ISBN)
CHF 97,35 inkl. MwSt
This book elaborates on an idea put forward by M. Abouzaid on equipping the Morse cochain complex of a smooth Morse function on a closed oriented manifold with the structure of an A -algebra by means of perturbed gradient flow trajectories. This approach is a variation on K. Fukaya's definition of Morse-A -categories for closed oriented manifolds involving families of Morse functions. To make A -structures in Morse theory accessible to a broader audience, this book provides a coherent and detailed treatment of Abouzaid's approach, including a discussion of all relevant analytic notions and results, requiring only a basic grasp of Morse theory. In particular, no advanced algebra skills are required, and the perturbation theory for Morse trajectories is completely self-contained.
In addition to its relevance for finite-dimensional Morse homology, this book may be used as a preparation for the study of Fukaya categories in symplectic geometry. It will beof interest to researchers in mathematics (geometry and topology), and to graduate students in mathematics with a basic command of the Morse theory.

Dr. Stephan Mescher is a Research Fellow at the University of Leipzig. He graduated with a degree in Mathematics from Bielefeld University in 2008 and obtained his Ph.D. at the University of Leipzig in 2017, supervised by Prof. Matthias Schwarz.

1. Basics on Morse homology.- 2. Perturbations of gradient flow trajectories.- 3. Nonlocal generalizations.- 4. Moduli spaces of perturbed Morse ribbon trees.- 5. The convergence behaviour of sequences of perturbed Morse ribbon trees.- 6. Higher order multiplications and the A -relations.- 7. A -bimodule structures on Morse chain complexes.- A. Orientations and sign computations for perturbed Morse ribbon trees.

Erscheinungsdatum
Reihe/Serie Atlantis Studies in Dynamical Systems
Zusatzinfo XXV, 171 p. 20 illus.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 314 g
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte A-infinity-algebras • Differential topology • geometric topology • Morse Homology • Morse Theory
ISBN-10 3-030-09526-6 / 3030095266
ISBN-13 978-3-030-09526-0 / 9783030095260
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
CHF 48,95
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
CHF 34,95