Machine Learning Pocket Reference
Working with Structured Data in Python
Seiten
2019
O'Reilly Media (Verlag)
978-1-4920-4754-4 (ISBN)
O'Reilly Media (Verlag)
978-1-4920-4754-4 (ISBN)
With detailed notes, tables, and examples, this handy reference will help you navigate the basics of structured machine learning. Author Matt Harrison delivers a valuable guide that you can use for additional support during training and as a convenient resource when you dive into your next machine learning project.
Ideal for programmers, data scientists, and AI engineers, this book includes an overview of the machine learning process and walks you through classification with structured data. You’ll also learn methods for clustering, predicting a continuous value (regression), and reducing dimensionality, among other topics.
This pocket reference includes sections that cover:
Classification, using the Titanic dataset
Cleaning data and dealing with missing data
Exploratory data analysis
Common preprocessing steps using sample data
Selecting features useful to the model
Model selection
Metrics and classification evaluation
Regression examples using k-nearest neighbor, decision trees, boosting, and more
Metrics for regression evaluation
Clustering
Dimensionality reduction
Scikit-learn pipelines
Ideal for programmers, data scientists, and AI engineers, this book includes an overview of the machine learning process and walks you through classification with structured data. You’ll also learn methods for clustering, predicting a continuous value (regression), and reducing dimensionality, among other topics.
This pocket reference includes sections that cover:
Classification, using the Titanic dataset
Cleaning data and dealing with missing data
Exploratory data analysis
Common preprocessing steps using sample data
Selecting features useful to the model
Model selection
Metrics and classification evaluation
Regression examples using k-nearest neighbor, decision trees, boosting, and more
Metrics for regression evaluation
Clustering
Dimensionality reduction
Scikit-learn pipelines
Matt runs MetaSnake, a Python and Data Science training and consulting company. He has over 15 years of experience using Python across a breadth of domains: Data Science, BI, Storage, Testing and Automation, Open Source Stack Management, and Search.
Erscheinungsdatum | 12.09.2019 |
---|---|
Verlagsort | Sebastopol |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Informatik ► Grafik / Design ► Digitale Bildverarbeitung | |
Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge | |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
ISBN-10 | 1-4920-4754-6 / 1492047546 |
ISBN-13 | 978-1-4920-4754-4 / 9781492047544 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
alles zum Drucken, Scannen, Modellieren
Buch | Softcover (2024)
Markt + Technik Verlag
CHF 34,90
Methoden, Konzepte und Algorithmen in der Optotechnik, optischen …
Buch | Hardcover (2024)
Hanser (Verlag)
CHF 55,95