Nicht aus der Schweiz? Besuchen Sie lehmanns.de

GARCH Models (eBook)

Structure, Statistical Inference and Financial Applications
eBook Download: EPUB
2019 | 2. Auflage
504 Seiten
John Wiley & Sons (Verlag)
978-1-119-31348-9 (ISBN)

Lese- und Medienproben

GARCH Models - Christian Francq, Jean-Michel Zakoian
Systemvoraussetzungen
103,99 inkl. MwSt
(CHF 99,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Provides a comprehensive and updated study of GARCH models and their applications in finance, covering new developments in the discipline

This book provides a comprehensive and systematic approach to understanding GARCH time series models and their applications whilst presenting the most advanced results concerning the theory and practical aspects of GARCH. The probability structure of standard GARCH models is studied in detail as well as statistical inference such as identification, estimation, and tests. The book also provides new coverage of several extensions such as multivariate models, looks at financial applications, and explores the very validation of the models used.

GARCH Models: Structure, Statistical Inference and Financial Applications, 2nd Edition features a new chapter on Parameter-Driven Volatility Models, which covers Stochastic Volatility Models and Markov Switching Volatility Models. A second new chapter titled Alternative Models for the Conditional Variance contains a section on Stochastic Recurrence Equations and additional material on EGARCH, Log-GARCH, GAS, MIDAS, and intraday volatility models, among others. The book is also updated with a more complete discussion of multivariate GARCH; a new section on Cholesky GARCH; a larger emphasis on the inference of multivariate GARCH models; a new set of corrected problems available online; and an up-to-date list of references.

* Features up-to-date coverage of the current research in the probability, statistics, and econometric theory of GARCH models

* Covers significant developments in the field, especially in multivariate models

* Contains completely renewed chapters with new topics and results

* Handles both theoretical and applied aspects

* Applies to researchers in different fields (time series, econometrics, finance)

* Includes numerous illustrations and applications to real financial series

* Presents a large collection of exercises with corrections

* Supplemented by a supporting website featuring R codes, Fortran programs, data sets and Problems with corrections

GARCH Models, 2nd Edition is an authoritative, state-of-the-art reference that is ideal for graduate students, researchers, and practitioners in business and finance seeking to broaden their skills of understanding of econometric time series models.

CHRISTIAN FRANCQ, PHD, is Professor of Econometrics and Finance at CREST (Center for Research in Economics and Statistics) and ENSAE (National School of Statistics and Economic Administration). JEAN-MICHEL ZAKOIAN, PHD, is Professor of Econometrics and Finance at CREST (Center for Research in Economics and Statistics) and ENSAE (National School of Statistics and Economic Administration). They have both published various papers on this topic in statistical and econometric journals, including Econometrica, Econometric Theory, Journal of Econometrics, Bernoulli, Journal of the Royal Statistical Society (Series B) and Journal of the American Statistical Association.

Chapter 1- Classical Time Series Models and Financial Series

Chapter 2- GARCH( p, q) Processes

Chapter 3- Mixing* Chapter 4- Alternative Models for the Conditional Variance

Chapter 5- Identification

Chapter 6- Estimating ARCH Models by Least Squares

Chapter 7- Estimating GARCH Models by Quasi-Maximum Likelihood

Chapter 8- Tests Based on the Likelihood

Chapter 9- Optimal Inference and Alternatives to the QMLE* Chapter 10- Multivariate GARCH Processes

Chapter 11- Financial Applications

Chapter 12- Parameter-driven volatility models

Appendix 1

Appendix 2

Appendix 3

Appendix 4

Appendix 5

Erscheint lt. Verlag 21.3.2019
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Econometric & Statistical Methods • Econometrics • Economics • Finanz- u. Wirtschaftsstatistik • Finanzwesen • Ökonometrie • Ökonometrie u. statistische Methoden • Statistics • Statistics for Finance, Business & Economics • Statistik • Volkswirtschaftslehre • Wirtschaftsstatistik
ISBN-10 1-119-31348-1 / 1119313481
ISBN-13 978-1-119-31348-9 / 9781119313489
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 24,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich