Model–Based Processing – An Applied Subspace Identification Approach
Wiley-Blackwell (Hersteller)
978-1-119-45769-5 (ISBN)
- Keine Verlagsinformationen verfügbar
- Artikel merken
Model-Based Processing An Applied Subspace Identification Approach provides expert insight on developing models for designing model-based signal processors (MBSP) employing subspace identification techniques to achieve model-based identification (MBID) and enables readers to evaluate overall performance using validation and statistical analysis methods. Focusing on subspace approaches to system identification problems, this book teaches readers to identify models quickly and incorporate them into various processing problems including state estimation, tracking, detection, classification, controls, communications, and other applications that require reliable models that can be adapted to dynamic environments.
The extraction of a model from data is vital to numerous applications, from the detection of submarines to determining the epicenter of an earthquake to controlling an autonomous vehicles--all requiring a fundamental understanding of their underlying processes and measurement instrumentation. Emphasizing real-world solutions to a variety of model development problems, this text demonstrates how model-based subspace identification system identification enables the extraction of a model from measured data sequences from simple time series polynomials to complex constructs of parametrically adaptive, nonlinear distributed systems. In addition, this resource features:
Kalman filtering for linear, linearized, and nonlinear systems; modern unscented Kalman filters; as well as Bayesian particle filters
Practical processor designs including comprehensive methods of performance analysis
Provides a link between model development and practical applications in model-based signal processing
Offers in-depth examination of the subspace approach that applies subspace algorithms to synthesized examples and actual applications
Enables readers to bridge the gap from statistical signal processing to subspace identification
Includes appendices, problem sets, case studies, examples, and notes for MATLAB
Model-Based Processing: An Applied Subspace Identification Approach is essential reading for advanced undergraduate and graduate students of engineering and science as well as engineers working in industry and academia.
JAMES V. CANDY, PHD, is Chief Scientist for Engineering, Distinguished Member of the Technical Staff, and founder of the Center for Advanced Signal & Image Sciences (CASIS), Lawrence Livermore National Laboratory, Livermore, California. Dr. Candy is also Adjunct Full-Professor, University of California, Santa Barbara, a Fellow of the IEEE, and a Fellow of the Acoustical Society of America. He is author of Bayesian Signal Processing: Classical, Modern, and Particle Filtering Methods and Model-Based Signal Processing (John Wiley & Sons, Inc., 2006) and Bayesian Signal Processing: Classical, Modern and Particle Filtering Methods, Second Edition (John Wiley & Sons, Inc., 2016). Dr. Candy was awarded the IEEE Distinguished Technical Achievement Award for his development of model-based signal processing and the Acoustical Society of America Helmholtz-Rayleigh Interdisciplinary Silver Medal for his contributions to acoustical signal processing and underwater acoustics.
Erscheint lt. Verlag | 15.3.2019 |
---|---|
Verlagsort | Hoboken |
Sprache | englisch |
Maße | 150 x 250 mm |
Gewicht | 666 g |
Themenwelt | Mathematik / Informatik ► Informatik |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Nachrichtentechnik | |
ISBN-10 | 1-119-45769-6 / 1119457696 |
ISBN-13 | 978-1-119-45769-5 / 9781119457695 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich