PySpark SQL Recipes (eBook)
XXIV, 323 Seiten
Apress (Verlag)
978-1-4842-4335-0 (ISBN)
- Understand PySpark SQL and its advanced features
- Use SQL and HiveQL with PySpark SQL
- Work with structured streaming
- Optimize PySpark SQL
- Master graphframes and graph processing
Raju Kumar Mishra has strong interests in data science and systems that have the capability of handling large amounts of data and operating complex mathematical models through computational programming. He was inspired to pursue an M. Tech in computational sciences from Indian Institute of Science in Bangalore, India. Raju primarily works in the areas of data science and its different applications. Working as a corporate trainer he has developed unique insights that help him in teaching and explaining complex ideas with ease. Raju is also a data science consultant solving complex industrial problems. He works on programming tools such as R, Python, scikit-learn, Statsmodels, Hadoop, Hive, Pig, Spark, and many others. His venture Walsoul Private Ltd provides training in data science, programming, and big data.
Carry out data analysis with PySpark SQL, graphframes, and graph data processing using a problem-solution approach. This book provides solutions to problems related to dataframes, data manipulation summarization, and exploratory analysis. You will improve your skills in graph data analysis using graphframes and see how to optimize your PySpark SQL code.PySpark SQL Recipes starts with recipes on creating dataframes from different types of data source, data aggregation and summarization, and exploratory data analysis using PySpark SQL. You'll also discover how to solve problems in graph analysis using graphframes.On completing this book, you'll have ready-made code for all your PySpark SQL tasks, including creating dataframes using data from different file formats as well as from SQL or NoSQL databases.What You Will LearnUnderstand PySpark SQL and its advanced featuresUse SQL and HiveQL with PySpark SQLWork with structured streamingOptimize PySpark SQL Master graphframes and graph processingWho This Book Is ForData scientists, Python programmers, and SQL programmers.
Raju Kumar Mishra has strong interests in data science and systems that have the capability of handling large amounts of data and operating complex mathematical models through computational programming. He was inspired to pursue an M. Tech in computational sciences from Indian Institute of Science in Bangalore, India. Raju primarily works in the areas of data science and its different applications. Working as a corporate trainer he has developed unique insights that help him in teaching and explaining complex ideas with ease. Raju is also a data science consultant solving complex industrial problems. He works on programming tools such as R, Python, scikit-learn, Statsmodels, Hadoop, Hive, Pig, Spark, and many others. His venture Walsoul Private Ltd provides training in data science, programming, and big data.Sundar Rajan Raman is an artificial intelligence practitioner currently working at Bank of America. He holds a Bachelor of Technology degree from the National Institute of Technology, India. Being a seasoned Java and J2EE programmer he has worked on critical applications for companies such as AT&T, Singtel, and Deutsche Bank. He is also a seasoned big data architect. His current focus is on artificial intelligence space including machine learning and deep learning.
Chapter 1: Introduction to PySparkSQL Chapter Goal: Reader will understand about PySpark, PySparkSQL , Catalyst Optimizer, Project Tungsten and Hive
No of pages 20-30
Sub -Topics
1. PySpark
2. PySparkSQL
3. Hive
4. Catalyst
5. Project Tungsten
Chapter 2: Some time with Installation Chapter Goal: Learner will understand about installation of Spark, Hive, PostgreSQL, MySQL, MongoDB, Cassandra etc.
No of pages: 30 -40
Sub - Topics
1. Installation Spark
2. Installation Hive
3. Installation MySQL
4. Installation MongoDB
Chapter 3: IO in PySparkSQL Chapter Goal: This chapter will provide recipes to the reader, which will enable them to create PySparkSQL DataFrame from different sources.
No of pages : 40-50
Sub - Topics:
1. Creating DataFrame from data.
2. Reading csv file to create Dataframe
3. Reading JSON file to create Dataframe.
4. Saving DataFrames to different formats.
Chapter 4 : Operations on PySparkSQL DataFrames Chapter Goal: Reader will learn about data filtering, data manuipulation, data descriptive analysis , Dealing with missing value etc
No Of Pages ; 40 -50
1. Data filtering
2. Data manipulation
3. Row and column manipulation
Chapter 5 : Data Merging and Data Aggregation using PySparkSQL Chapter Goal: Reader will learn about data merging and aggregation using PySparkSQL
1. Data Merging
2. Data aggregation
Chapter 6: SQL, NoSQL and PySparkSQL Chapter Goal: Reader will learn to run SQL and HiveQL queries on Dataframe
No of pages: 30-40
Sub - Topics:
1. Running SQL on DataFrame
2. Running HiveQL
Chapter 7: Structured Streaming Chapter Goal: Reader will understand about structured streaming
No of pages : 30-40
1. Different type of modes.
2. Data aggregation in structured streaming
3. Different type of sources
Chapter 8 : Optimizing PySparkSQL Chapter Goal: Reader will learn about optimizing PySparkSQL
No Of pages : 20-30
Optimizing PySparkSQL
Chapter 9 : GraphFrames Chapter Goal: Reader will understand about graph data analysis with Graphframes.
No of pages : 30-40
1. GraphFrame Creation
1. Page Rank
2. Breadth First Search
Erscheint lt. Verlag | 18.3.2019 |
---|---|
Zusatzinfo | XXIV, 323 p. 57 illus. |
Verlagsort | Berkeley |
Sprache | englisch |
Themenwelt | Informatik ► Datenbanken ► SQL Server |
Mathematik / Informatik ► Informatik ► Netzwerke | |
Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge | |
Schlagworte | Big Data • Data processing • Graph frames • No SQL • PySpark • PySpark SQL • Python • Spark Streaming |
ISBN-10 | 1-4842-4335-8 / 1484243358 |
ISBN-13 | 978-1-4842-4335-0 / 9781484243350 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 4,8 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich