OpenFOAM® (eBook)
X, 536 Seiten
Springer International Publishing (Verlag)
978-3-319-60846-4 (ISBN)
This book contains selected papers of the 11th OpenFOAM® Workshop that was held in Guimarães, Portugal, June 26 - 30, 2016.
The 11th OpenFOAM® Workshop had more than 140 technical/scientific presentations and 30 courses, and was attended by circa 300 individuals, representing 180 institutions and 30 countries, from all continents.
The OpenFOAM® Workshop provided a forum for researchers, industrial users, software developers, consultants and academics working with OpenFOAM® technology. The central part of the Workshop was the two-day conference, where presentations and posters on industrial applications and academic research were shown.
OpenFOAM® (Open Source Field Operation and Manipulation) is a free, open source computational toolbox that has a larger user base across most areas of engineering and science, from both commercial and academic organizations. As a technology, OpenFOAM® provides an extensive range of features to solve anything from complex fluid flows involving chemical reactions, turbulence and heat transfer, to solid dynamics and electromagnetics, among several others. Additionally, the OpenFOAM technology offers complete freedom to customize and extend its functionalities.
Preface 5
Contents 7
Added Mass Partitioned Fluid–Structure Interaction Solver Based on a Robin Boundary Condition for Pressure 11
1 Introduction 12
2 Mathematical Model 13
2.1 Fluid Governing Equations 13
2.2 Solid Governing Equations 14
2.3 Conditions at the Fluid–Solid Interface 15
2.4 Robin Boundary Condition for Pressure 16
3 Numerical Model 18
3.1 Discretisation of the Computational Domain 18
3.2 Discretisation of the Governing Equations 19
3.3 Solution Procedure for Fluid and Solid Models 23
3.4 Solution Procedure for Fluid–Structure Interaction 23
4 Numerical Results 25
4.1 Wave Propagation in an Elastic Tube 25
4.2 Enclosed Domain: A Balloon-Type Problem 29
5 Conclusions 30
References 31
CAD-Based Parameterization for Adjoint Optimization 33
1 Introduction 33
1.1 Boundary Representation 34
1.2 NURBS Curves and Surfaces 35
1.3 Connecting CAD to CFD 36
2 Meshing of the CAD Surfaces 37
2.1 Using Dimensionless Parameters 37
2.2 Using an Octree Mesh as a Background Mesh 38
2.3 Using the Advancing Front Method for Meshing the Surfaces 38
3 Changing the Shape of BRep Models 39
3.1 Adjoint-Based Optimization and the Continuous Adjoint Technique 42
3.2 Volumetric NURBS Free Form Deformation 44
3.3 Fitting the Displaced Surface Mesh 44
4 Conclusions 46
References 47
Cavitating Flow in a 3D Globe Valve 49
1 Introduction 49
2 Numerical Approach 50
2.1 Governing Equations 50
2.2 Cavitation Model 51
2.3 Turbulence Model 52
2.4 Computational Domain 53
2.5 Numerical Methodology 54
3 Results 55
3.1 Operating Conditions 55
3.2 Influence of Turbulence on pv 56
3.3 Flow Topology 56
3.4 Flow Curve 57
3.5 Forces on the Stem 58
4 Conclusions 59
References 59
CFD Analysis and Optimisation of Tidal Turbine Arrays Using OpenFOAM® 61
1 Introduction 61
1.1 Esturine Tidal Energy 62
1.2 Lift/Drag Turbine 63
1.3 Project Aims 64
2 Detailed CFD 65
3 Immersed Body Force Method 67
3.1 Validation 68
3.2 Farm Modelling 70
4 Optimisation 70
5 Conclusions 73
References 73
Combining an OpenFOAM®-Based Adjoint Solver with RBF Morphing for Shape Optimization Problems on the RBF4AERO Platform 75
1 Introduction 76
2 Continuous Adjoint Formulation 77
3 RBF-Based Morphing 80
4 Optimization Algorithm 81
5 Applications 82
6 Conclusions 84
References 85
Development of a Combined Euler-Euler Euler-Lagrange Slurry Model 86
1 Introduction 87
2 Current OpenFOAM Models 88
3 Solver Development 88
3.1 Mesh/Baffles/Regions 89
3.2 Interpolation 90
3.3 Addition of Particles to the Solver 92
4 Initial Test of Model 93
4.1 First Phase Velocity Comparison 94
4.2 Particle Comparison 97
5 Future Development and Conclusion 98
References 98
Development of Data-Driven Turbulence Models in OpenFOAM®: Application to Liquid Fuel Nuclear Reactors 101
1 Introduction 102
2 Application of State-of-the-Art Turbulence Models for the BFS 103
3 Optimization of a k–? Model with GEATFOAM 109
4 A Nonlinear Quadratic Closure for the Anisotropy Tensor Developed with the GEATFOAM Tool 111
5 Conclusions 113
References 115
Differential Heating as a Strategy for Controlling the Flow Distribution in Profile Extrusion Dies 117
1 Introduction 117
2 Die-Design Methodology 118
3 Numerical Modeling 120
3.1 Governing Equations 120
4 Case Study 121
4.1 Material Characterization 122
4.2 Geometry and Mesh 122
4.3 Numerical Trials and Results 124
4.4 Experimental Assessment 126
5 Conclusions 127
References 127
Drag Model for Coupled CFD-DEM Simulations of Non-spherical Particles 129
1 Introduction 129
2 Modeling of Non-spherical Particles 130
2.1 Drag Forces on Non-spherical Particles 130
3 Drag Model Development 133
4 Application 136
5 Conclusions 138
References 138
Effects of Surface Textures on Gravity-Driven Liquid Flow on an Inclined Plate 140
1 Introduction 140
2 Numerical Model 143
2.1 Model Equations 143
2.2 Computational Domain and Simulation Set-Up 144
3 Results and Discussion 147
4 Conclusion 150
References 151
Enhanced Turbomachinery Capabilities for Foam-Extend: Development and Validation 152
1 Introduction 153
2 Mathematical Model 154
3 Validation and Discussion 155
3.1 Aachen Test Case: Partial Overlap GGI Approach 156
3.2 Aachen Test Case: Mixing Plane Approach 156
3.3 Global Pump Parameters Comparison 158
4 Conclusion 160
References 161
Evaluation of Energy Maximising Control Systems for Wave Energy Converters Using OpenFOAM® 163
1 Introduction 163
1.1 Outline of Chapter 164
2 OpenFOAM® in Wave Energy Applications 165
3 Evaluating Energy Maximisation Control Systems 167
4 Illustrative Example 168
4.1 Implementation 169
4.2 Results 171
5 Conclusion 174
References 175
Floating Potential Boundary Condition in OpenFOAM® 178
1 Introduction 178
2 Theoretical Background 179
3 Implementation in OpenFOAM® 183
4 Examples 183
5 Conclusions 185
References 185
Fluid Dynamic and Thermal Modeling of the Injection Molding Process in OpenFOAM® 187
1 Introduction 187
2 Governing Equations 188
2.1 Fluid Dynamic Equations 188
2.2 Thermal Modeling 189
2.3 Multiphase Modeling 190
2.4 Material Models 191
2.5 Modeling Processing Steps of Injection Molding 192
3 Experiments 193
3.1 Processing Conditions 193
3.2 Measurement Errors 194
4 Validation 195
4.1 Filling Phase 195
4.2 Packing Phase 196
4.3 Cooling Phase 196
4.4 Parameter study 198
5 Conclusion 198
References 199
Free-Surface Dynamics in Induction Processing Applications 201
1 Introduction 201
2 Magnetodynamics 202
3 Hydrodynamics 204
4 Mesh Motion 205
5 Multi-mesh Multi-physics 206
5.1 Parallelisation 207
5.2 Magnetohydrodynamic Solution 207
5.3 Improved Surface-Tracking Method 209
6 Application Examples 211
7 Conclusion 213
References 213
GEN-FOAM: An OpenFOAM®-Based Multi-physics Solver for Nuclear Reactor Analysis 215
1 Introduction 215
2 The GeN-Foam Multi-physics Solver 217
2.1 Neutron Transport 218
2.2 Thermal-Mechanics 219
2.3 Thermal-Hydraulics 220
2.4 Fuel Temperatures 221
2.5 Coupling Strategy 222
3 Discussion and Conclusions 222
References 225
Harmonic Balance Method for Turbomachinery Applications 226
1 Introduction 227
2 Mathematical Model 229
2.1 Passive Scalar Transport 229
2.2 Incompressible Fluid Flow 231
3 Results 232
4 Conclusion 234
References 235
Implementation of a Flexible and Modular Multiphase Framework for the Analysis of Surface-Tension-Driven Flows Based on a Hybrid LS-VOF Approach 237
1 Introduction 237
2 Mathematical Formulation 239
2.1 Governing Equations 239
2.2 The Simplified LS-VOF Method 240
2.3 Implementation of the Thermal Marangoni Migration Method in OpenFOAM® 242
3 Solver Validation 244
4 Conclusions and Future Directions 247
References 248
Implicitly Coupled Pressure–Velocity Solver 250
1 Introduction 250
2 Mathematical and Numerical Model 252
2.1 Incompressible Formulation 252
2.2 Compressible Formulation 254
3 Validation and Benchmarking 258
3.1 Validation of the Compressible Coupled Solver 259
3.2 Validation and Benchmarking of the Incompressible Coupled Solver 262
4 Conclusion 267
References 267
Improving the Numerical Stability of Steady-State Differential Viscoelastic Flow Solvers in OpenFOAM® 269
1 Introduction 269
2 Governing Equations and Numerical Procedure 270
3 Case Studies 272
3.1 Flow in a 4:1 Planar Sudden Contraction 272
3.2 Flow Around a Confined Cylinder 275
4 Conclusions 279
References 280
IsoAdvector: Geometric VOF on General Meshes 281
1 The Interfacial Flow Equations 282
2 IsoAdvector for Interface Advection 282
2.1 Interface Reconstruction 284
2.2 Interface Advection 285
2.3 Bounding 287
3 Pure Advection Tests 288
3.1 Notched Disc in Solid Body Rotation 288
3.2 Sphere in Shear Flow 290
4 Using isoAdvector in interFoam 290
5 The damBreak Case 292
6 Steady Stream Function Wave 293
7 Summary 295
References 296
Liquid Atomization Modeling in OpenFOAM® 297
1 Introduction 298
2 ELSA-Base 299
3 Quasi-Multiphase Eulerian Approach 301
4 ELSA-ICM Approach 304
References 307
Lubricated Contact Model for Cold Metal Rolling Processes 309
1 Introduction 309
2 Mathematical Model 310
2.1 Asperity Contact Model 311
2.2 Lubricant Flow Model 315
2.3 Implementation of Numerical Models 316
3 Results and Discussion 317
3.1 Sheet Rolling 317
3.2 Wire Rolling 320
4 Conclusion 321
References 323
Modeling of Turbulent Flows in Rectangular Ducts Using OpenFOAM® 324
1 Introduction 325
2 Experimental Setup 326
2.1 Preston Tube 327
2.2 Irwin Probes 327
3 Numerical Setup 328
4 Results and Discussion 329
4.1 Experimental Results 331
4.2 Calibration of the Irwin Probes 332
4.3 Numerical Results 332
5 Velocity Influence 335
5.1 Preliminary Results of the Rectangular Duct with Variable Section 336
6 Conclusions 337
References 338
Numerical Approach for Possible Identification of the Noisiest Zones on the Surface of a Centrifugal Fan Blade 340
1 Introduction 341
2 Theory 342
2.1 Geometry of the Problem 342
2.2 Estimation of the Acoustic Field (FW& H Analogy)
2.3 Proper Orthogonal Decomposition 343
2.4 Singular Value Decomposition (SVD) 346
3 Application 347
3.1 Geometry, Spatial Discretization, and Boundary Conditions 347
3.2 Governing Equations and Time Discretization 348
3.3 POD Analysis and Interpretation 349
3.4 SVD Analysis and Interpretation 350
3.5 Conclusion 352
References 352
Numerical Modeling of Flame Acceleration and Transition from Deflagration to Detonation Using OpenFOAM® 355
1 Introduction 356
2 Governing Equations 357
2.1 Solution Algorithms 358
2.2 Transition from Low Mach Number to High Mach Number Flows 361
3 Case Study 361
4 Results and Discussion 362
4.1 Predictions Using the Pressure-Based Solver 362
4.2 Predictions Using the Density-Based Solver 364
5 Conclusion 368
References 369
Open-Source 3D CFD of a Quadrotor Cyclogyro Aircraft 371
1 Background 372
2 CFD Model 373
2.1 Mesh Generation 375
2.2 Isolated Airframe Mesh 375
2.3 Rotor Model 376
2.4 Entire Aircraft Mesh 377
2.5 Final Mesh Tuning 378
2.6 Validation 380
3 Domain Decomposition Parallelization 381
4 Closing Remarks 383
References 384
A Review of Shape Distortion Methods Available in the OpenFOAM® Framework for Automated Design Optimisation 387
1 Introduction 387
2 Grid Deformation and Regeneration Techniques 391
2.1 snappyHexMesh 391
2.2 Grid Distortion Methods 393
2.3 Immersed Boundary Method (IBM) 394
3 Conclusions 396
References 396
Simulating Polyurethane Foams Using the MoDeNa Multi-scale Simulation Framework 398
1 Introduction 399
2 Governing Equations 400
2.1 Reaction Kinetics 400
2.2 Bubble-Scale Model 400
2.3 Modeling the Macroscopic Scale 402
3 The MoDeNa Software Framework 404
3.1 Design Philosophy 404
3.2 Scale Coupling 404
3.3 Software Components 405
3.4 Coupling of Macro- and Bubble-Scale Models 406
4 MoDeNa as a Functional Piece in Applications 407
4.1 Defining Surrogate Models 407
4.2 Embedding Surrogate Models into OpenFOAM® 408
4.3 Overall Simulation Workflow 409
5 Physical Properties and Operating Conditions 409
6 Results and Discussion 410
7 Conclusions 412
References 412
Simulation of a Moving-Bed Reactor and a Fluidized-Bed Reactor by DPM and MPPIC in OpenFOAM® 415
1 Introduction 415
2 Physical Models 416
2.1 Discrete Particle Method (DPM) 416
2.2 Multiphase Particle-In-Cell (MPPIC) 418
3 Implementation Strategy in OpenFOAM® 418
4 Results for the Moving-Bed Reactor 419
4.1 Case Setup 419
4.2 Results and Discussion 421
5 Results for the Fluidized-Bed Reactor 423
5.1 Lab-Scale Fluidized-Bed Reactor 423
5.2 Industrial-Scale Fluidized-Bed Reactor 426
6 Conclusion 428
References 430
Simulation of Particulate Fouling and its Influence on Friction Loss and Heat Transfer on Structured Surfaces using Phase-Changing Mechanism 432
1 Introduction 432
2 Multiphase Approach for the Simulation of Particulate Fouling 433
2.1 Lagrangian Branch 433
2.2 Eulerian Branch 438
2.3 Computational Grid and Boundary Conditions 439
3 Results 440
3.1 Validation 440
3.2 Particulate Fouling on Structured Heat Transfer Surfaces 444
4 Conclusion 447
References 447
solidificationMeltingSource: A Built-in fvOption in OpenFOAM® for Simulating Isothermal Solidification 449
1 Introduction 449
1.1 fvOptions 449
1.2 Background on Isothermal Solidification 450
2 Governing Equations 451
2.1 Conservation Equations 451
2.2 Derivation of the Equations for Source Terms 452
3 Implementation in solidificationMeltingSource 454
4 Problem Statement and Simulation Setup 455
5 Results 456
6 Conclusions 456
References 457
Study of OpenFOAM® Efficiency for Solving Fluid–Structure Interaction Problems 459
1 Introduction 460
2 Governing Equations 461
3 Numerical Methods 462
3.1 OpenFOAM®: A Fluid–Structure Interaction Analysis Using the Finite Volume Method 462
3.2 Kratos: Particle Finite Element Method with Fixed Mesh 463
3.3 Vortex Element Method 463
3.4 LS-STAG Method 465
4 Numerical Simulation 467
4.1 Flow Simulation Around the Fixed Airfoil 468
4.2 Wind Resonance Simulation 468
4.3 Hysteresis Simulation 470
5 Comparison of the Considered Numerical Methods 470
6 Conclusion 471
References 471
The Harmonic Balance Method for Temporally Periodic Free Surface Flows 474
1 Introduction 474
2 Harmonic Balance Method 475
2.1 Mathematical Model 475
2.2 Coupling of Steady-State Equations 476
3 Test Cases 476
3.1 2D Ramp Test Case 477
3.2 DTMB Wave Diffraction Test Case 477
4 Conclusion 481
References 481
Two-Way Coupled Eulerian–Eulerian Simulations of a Viscous Snow Phase with Turbulent Drag 483
1 Introduction 483
2 The Drifting Snow Viscosity Model 488
3 Validation 490
3.1 Validation Experiment 490
3.2 Simulation Setup 492
3.3 Results and Discussion 495
4 Conclusions and Future Work 498
References 498
Use of OpenFOAM® for the Investigation of Mixing Time in Agitated Vessels with Immersed Helical Coils 501
1 Computational Fluid Dynamics in the Chemical Industry 501
1.1 Agitated Vessels in the Chemical Industry 502
2 Heat Exchange in Stirred Vessels 502
3 Investigated Object 503
4 Measurement Approach 504
4.1 Velocity Field via Particle Image Velocimetry (PIV) 504
4.2 Concentration Field via Laser-Induced Fluorescence (LIF) 505
5 Mixing Time 506
5.1 Definition of Mixing Time 506
5.2 Simulation of Mixing Processes 507
6 Velocity Field 507
7 Tracing via Passive Scalar Transport on Existing Velocity Fields 508
8 Determination of Mixing Time at Probe Locations 509
9 Determination of Global Mixing Time 509
10 Time Resolution for Scalar Transport 510
11 Validation of CFD Results 510
12 Conclusions and Outlook 510
References 511
Wind Turbine Diffuser Aerodynamic Study with OpenFOAM® 513
1 Introduction 513
2 Analytical Framework 514
3 Numerical Setup 515
4 Results 518
5 Conclusions 522
References 522
Index 524
Erscheint lt. Verlag | 24.1.2019 |
---|---|
Zusatzinfo | X, 536 p. 287 illus., 212 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Informatik ► Weitere Themen ► CAD-Programme |
Naturwissenschaften ► Physik / Astronomie | |
Technik ► Bauwesen | |
Technik ► Maschinenbau | |
Schlagworte | Complex fluid flows • Computer Aided Design • multiphysics • numerical modeling • OpenFOAM® • Open Source • Open Source Field Operation and Manipulation • Solid dynamics |
ISBN-10 | 3-319-60846-0 / 3319608460 |
ISBN-13 | 978-3-319-60846-4 / 9783319608464 |
Haben Sie eine Frage zum Produkt? |
Größe: 23,9 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich