Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Applied Predictive Modeling - Max Kuhn, Kjell Johnson

Applied Predictive Modeling

, (Autoren)

Buch | Softcover
600 Seiten
2019 | Softcover reprint of the original 1st ed. 2013
Springer-Verlag New York Inc.
978-1-4939-7936-3 (ISBN)
CHF 149,75 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. The text illustrates all parts of the modeling process through many hands-on, real-life examples, and every chapter contains extensive R code for each step of the process. 

This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses.  To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package.


This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics.

Dr. Kuhn is a Director of Non-Clinical Statistics at Pfizer Global R&D in Groton Connecticut. He has been applying predictive models in the pharmaceutical and diagnostic industries for over 15 years and is the author of a number of R packages.  Dr. Johnson has more than a decade of statistical consulting and predictive modeling experience in pharmaceutical research and development.  He is a co-founder of Arbor Analytics, a firm specializing in predictive modeling and is a former Director of Statistics at Pfizer Global R&D.  His scholarly work centers on the application and development of statistical methodology and learning algorithms.

General Strategies.- Regression Models.- Classification Models.- Other Considerations.- Appendix.- References.- Indices.

Erscheinungsdatum
Zusatzinfo 296 Illustrations, color; 14 Illustrations, black and white; XIII, 600 p. 310 illus., 296 illus. in color.
Verlagsort New York
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Studium Querschnittsbereiche Epidemiologie / Med. Biometrie
Schlagworte Model • Non-linear • predictive models • R • regression models • regression trees
ISBN-10 1-4939-7936-1 / 1493979361
ISBN-13 978-1-4939-7936-3 / 9781493979363
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
ein überfälliges Gespräch zu einer Pandemie, die nicht die letzte …

von Christian Drosten; Georg Mascolo

Buch | Hardcover (2024)
Ullstein Buchverlage
CHF 34,95

von Matthias Egger; Oliver Razum; Anita Rieder

Buch | Softcover (2021)
De Gruyter (Verlag)
CHF 67,50