Compact and Fast Machine Learning Accelerator for IoT Devices (eBook)
IX, 149 Seiten
Springer Singapore (Verlag)
978-981-13-3323-1 (ISBN)
This book presents the latest techniques for machine learning based data analytics on IoT edge devices. A comprehensive literature review on neural network compression and machine learning accelerator is presented from both algorithm level optimization and hardware architecture optimization. Coverage focuses on shallow and deep neural network with real applications on smart buildings. The authors also discuss hardware architecture design with coverage focusing on both CMOS based computing systems and the new emerging Resistive Random-Access Memory (RRAM) based systems. Detailed case studies such as indoor positioning, energy management and intrusion detection are also presented for smart buildings.
This book presents the latest techniques for machine learning based data analytics on IoT edge devices. A comprehensive literature review on neural network compression and machine learning accelerator is presented from both algorithm level optimization and hardware architecture optimization. Coverage focuses on shallow and deep neural network with real applications on smart buildings. The authors also discuss hardware architecture design with coverage focusing on both CMOS based computing systems and the new emerging Resistive Random-Access Memory (RRAM) based systems. Detailed case studies such as indoor positioning, energy management and intrusion detection are also presented for smart buildings.
Computing on Edge Devices in Internet-of-things (IoT).- The Rise of Machine Learning in IoT system.- Least-squares-solver for Shadow Neural Network.- Tensor-solver for Deep Neural Network.- Distributed-solver for Networked Neural Network.- Conclusion.
Erscheint lt. Verlag | 7.12.2018 |
---|---|
Reihe/Serie | Computer Architecture and Design Methodologies | Computer Architecture and Design Methodologies |
Zusatzinfo | IX, 149 p. 76 illus., 61 illus. in color. |
Verlagsort | Singapore |
Sprache | englisch |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Mathematik / Informatik ► Mathematik ► Finanz- / Wirtschaftsmathematik | |
Technik | |
Schlagworte | algorithm level optimization • Deep Neural Network • Distributed-solver • hardware architecture optimization • Internet-of-things (IoT) • Least-squares-solver • Machine Learning Accelerator • Networked Neural Network • neural network compression • Shadow Neural Network • Tensor-solver |
ISBN-10 | 981-13-3323-8 / 9811333238 |
ISBN-13 | 978-981-13-3323-1 / 9789811333231 |
Haben Sie eine Frage zum Produkt? |
Größe: 9,2 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich