Deep Reinforcement Learning for Wireless Networks
Springer International Publishing (Verlag)
978-3-030-10545-7 (ISBN)
This Springerbrief presents a deep reinforcement learning approach to wireless systems to improve system performance. Particularly, deep reinforcement learning approach is used in cache-enabled opportunistic interference alignment wireless networks and mobile social networks. Simulation results with different network parameters are presented to show the effectiveness of the proposed scheme.
There is a phenomenal burst of research activities in artificial intelligence, deep reinforcement learning and wireless systems. Deep reinforcement learning has been successfully used to solve many practical problems. For example, Google DeepMind adopts this method on several artificial intelligent projects with big data (e.g., AlphaGo), and gets quite good results..
Graduate students in electrical and computer engineering, as well as computer science will find this brief useful as a study guide. Researchers, engineers, computer scientists, programmers, and policy makers will also find this brief to be a useful tool.
Erscheinungsdatum | 31.01.2019 |
---|---|
Reihe/Serie | SpringerBriefs in Electrical and Computer Engineering |
Zusatzinfo | VIII, 71 p. 28 illus., 26 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 136 g |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Nachrichtentechnik | |
Schlagworte | Artificial Intelligence • Caching • connected vehicular networks • Deep learning • Deep Reinforcement Learning • interference alginment • machine learning • Mobile Edge Computing • Mobile Social Networks • Optimization • Reinforcement Learning • Resource Allocation • tensorflow • wireless networks • Wireless systems |
ISBN-10 | 3-030-10545-8 / 3030105458 |
ISBN-13 | 978-3-030-10545-7 / 9783030105457 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich