The Language of Self-Avoiding Walks
Connective Constants of Quasi-Transitive Graphs
Seiten
2019
|
1st ed. 2018
Springer Fachmedien Wiesbaden GmbH (Verlag)
978-3-658-24763-8 (ISBN)
Springer Fachmedien Wiesbaden GmbH (Verlag)
978-3-658-24763-8 (ISBN)
The connective constant of a quasi-transitive infinite graph is a measure for the asymptotic growth rate of the number of self-avoiding walks of length n from a given starting vertex. On edge-labelled graphs the formal language of self-avoiding walks is generated by a formal grammar, which can be used to calculate the connective constant of the graph. Christian Lindorfer discusses the methods in some examples, including the infinite ladder-graph and the sandwich of two regular infinite trees.
Christian Lindorfer wrote his master's thesis under the supervision of Prof. Dr. Wolfgang Woess at the Institute of Discrete Mathematics at Graz University of Technology, Austria.
Graph Height Functions and Bridges.- Self-Avoiding Walks on One-Dimensional Lattices.- The Algebraic Theory of Context-Free Languages.- The Language of Walks on Edge-Labelled Graphs.
Erscheinungsdatum | 15.01.2019 |
---|---|
Reihe/Serie | BestMasters |
Zusatzinfo | XI, 65 p. 1 illus. |
Verlagsort | Wiesbaden |
Sprache | englisch |
Maße | 148 x 210 mm |
Gewicht | 119 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Analysis | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Schlagworte | Bridges • context-free languages • Edge-labelld graphs • Graph height functions • k-ladder-tree • One-dimensional lattices • Self-avoiding walks |
ISBN-10 | 3-658-24763-0 / 3658247630 |
ISBN-13 | 978-3-658-24763-8 / 9783658247638 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich