Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Supervised Descriptive Pattern Mining (eBook)

eBook Download: PDF
2018 | 1st ed. 2018
XI, 185 Seiten
Springer International Publishing (Verlag)
978-3-319-98140-6 (ISBN)

Lese- und Medienproben

Supervised Descriptive Pattern Mining - Sebastián Ventura, José María Luna
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book provides a general and comprehensible overview of supervised descriptive pattern mining, considering classic algorithms and those based on heuristics.  It provides some formal definitions and a general idea about patterns, pattern mining, the usefulness of patterns in the knowledge discovery process, as well as a brief summary on the tasks related to supervised descriptive pattern mining. It also includes a detailed description on the tasks usually grouped under the term supervised descriptive pattern mining: subgroups discovery, contrast sets and emerging patterns. Additionally, this book includes two tasks, class association rules and exceptional models, that are also considered within this field.

A major feature of this book is that it provides a general overview (formal definitions and algorithms) of all the tasks included under the term supervised descriptive pattern mining. It considers the analysis of different algorithms either based on heuristics or based on exhaustive search methodologies for any of these tasks. This book also illustrates how important these techniques are in different fields, a set of real-world applications are described.

Last but not least, some related tasks are also considered and analyzed. The final aim of this book is to provide a general review of the supervised descriptive pattern mining field, describing its tasks, its algorithms, its applications, and related tasks (those that share some common features).

This book  targets developers, engineers and computer scientists aiming to apply classic and heuristic-based algorithms to solve different kinds of pattern mining problems and apply them to real issues. Students and researchers working in this field, can use this comprehensive book (which includes its methods and tools) as a secondary textbook.

Chapter 1. Introduction to Pattern Mining                   1.1 Importance of patterns                 1.2 Type of patterns                 1.3 Quality measures in pattern mining                                 1.3.1 Objective interestingness measures                                 1.3.2 Subjective interestingness measures                 1.4 Scalability issues                 1.4 Supervised descriptive local patterns   Chapter 2. Subgroup Discovery                   2.1 Introduction                 2.2 Task definition                 2.3 Quality measures                 2.4 Models in subgroup discovery   Chapter 3. Contrast sets                   3.1 Introduction                 3.2 Task definition                 3.3 Algorithms   Chapter 4. Emerging patterns                   4.1 Introduction                 4.2 Task definition                 4.3 Algorithms   Chapter 5. Class Association rules                   5.1 Introduction                 5.2 Task definition                                 5.2.1 Association rules                                 5.2.2 Class association rules                                 5.2.3 Associative classification                 5.3 Algorithms   Chapter 6. Exceptional models                   6.1 Introduction                 6.2 Exceptional model mining                 6.3 Exceptional preference mining                 6.4 Exceptional pattern mining                 6.5 Algorithms   Chapter 7. Applications of supervised descriptive local patterns                    7.1 Introduction                 7.2 Subgroup discovery                 7.3 Contrast sets                 7.4 Emerging patterns                 7.5 Exceptional models                 7.6 Class association rules   Chapter 8. Additional tasks related to supervised pattern mining                 8.1 Change mining                 8.2 Mining of closed sets for labeled data                 8.3 Bump hunting                 8.4 Impact rules                 8.5 Discrimination discovery                 8.6 Context aware

Erscheint lt. Verlag 5.10.2018
Zusatzinfo XI, 185 p. 42 illus.
Verlagsort Cham
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Association Rule Mining • Contrast Sets • Emerging Patterns • evolutionary algorithms • Exceptional Models • frequent pattern mining • Infrequent Pattern Mining • pattern mining • Pattern Mining applications • Pattern mining quality measures • Subgroup discovery • Supervised Descriptive Rule Discovery
ISBN-10 3-319-98140-4 / 3319981404
ISBN-13 978-3-319-98140-6 / 9783319981406
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
CHF 37,95
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 16,95