Nicht aus der Schweiz? Besuchen Sie lehmanns.de

AI in Cybersecurity (eBook)

Leslie F. Sikos (Herausgeber)

eBook Download: PDF
2018 | 1st ed. 2019
XVII, 205 Seiten
Springer International Publishing (Verlag)
978-3-319-98842-9 (ISBN)

Lese- und Medienproben

AI in Cybersecurity -
Systemvoraussetzungen
171,19 inkl. MwSt
(CHF 167,25)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book presents a collection of state-of-the-art AI approaches to cybersecurity and cyberthreat intelligence, offering strategic defense mechanisms for malware, addressing cybercrime, and assessing vulnerabilities to yield proactive rather than reactive countermeasures. The current variety and scope of cybersecurity threats far exceed the capabilities of even the most skilled security professionals. In addition, analyzing yesterday's security incidents no longer enables experts to predict and prevent tomorrow's attacks, which necessitates approaches that go far beyond identifying known threats.

Nevertheless, there are promising avenues: complex behavior matching can isolate threats based on the actions taken, while machine learning can help detect anomalies, prevent malware infections, discover signs of illicit activities, and protect assets from hackers. In turn, knowledge representation enables automated reasoning over network data, helping achieve cybersituational awareness. Bringing together contributions by high-caliber experts, this book suggests new research directions in this critical and rapidly growing field.




Leslie F. Sikos, Ph.D. is a computer scientist specializing in formal knowledge representation, ontology engineering, and automated reasoning applied to various domains, including cyberthreat intelligence and network applications that require cybersituational awareness. He has worked in both academia and the industry, and acquired hands-on skills with datacenter and cloud infrastructures, cyberthreat management, and firewall configuration. He holds professional certificates and is a member of various industry-leading organizations, such as the ACM, the Association for Automated Reasoning, the IEEE Special Interest Group on Big Data for Cyber Security and Privacy, and the IEEE Computer Society Technical Committee on Security and Privacy.

Leslie F. Sikos, Ph.D. is a computer scientist specializing in formal knowledge representation, ontology engineering, and automated reasoning applied to various domains, including cyberthreat intelligence and network applications that require cybersituational awareness. He has worked in both academia and the industry, and acquired hands-on skills with datacenter and cloud infrastructures, cyberthreat management, and firewall configuration. He holds professional certificates and is a member of various industry-leading organizations, such as the ACM, the Association for Automated Reasoning, the IEEE Special Interest Group on Big Data for Cyber Security and Privacy, and the IEEE Computer Society Technical Committee on Security and Privacy.

OWL Ontologies in Cybersecurity: Conceptual Modeling of Cyber-Knowledge.- Knowledge Representation of Network Semantics for Reasoning-Powered Cyber-Situational Awareness.- The Security of Machine Learning Systems.- Patch Before Exploited: An Approach to Identify Targeted Software Vulnerabilities.- Applying Artificial Intelligence Methods to Network Attack Detection.- Machine Learning Algorithms for Network Intrusion Detection.- Android Application Analysis using Machine Learning Techniques.

Erscheint lt. Verlag 17.9.2018
Reihe/Serie Intelligent Systems Reference Library
Intelligent Systems Reference Library
Zusatzinfo XVII, 205 p. 49 illus., 29 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Informatik Netzwerke Sicherheit / Firewall
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik
Schlagworte Artificial Intelligence • automated reasoning • cybersecurity • Cybersituational Awareness • Cyberthreat Intelligence • formal knowledge representation • machine learning
ISBN-10 3-319-98842-5 / 3319988425
ISBN-13 978-3-319-98842-9 / 9783319988429
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 6,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Praxishandbuch zu Krisenmanagement und Krisenkommunikation

von Holger Kaschner

eBook Download (2024)
Springer Fachmedien Wiesbaden (Verlag)
CHF 34,15
Methodische Kombination von IT-Strategie und IT-Reifegradmodell

von Markus Mangiapane; Roman P. Büchler

eBook Download (2024)
Springer Vieweg (Verlag)
CHF 41,95