Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Applied Natural Language Processing with Python - Taweh Beysolow II

Applied Natural Language Processing with Python (eBook)

Implementing Machine Learning and Deep Learning Algorithms for Natural Language Processing
eBook Download: PDF
2018 | 1st ed.
XV, 150 Seiten
Apress (Verlag)
978-1-4842-3733-5 (ISBN)
Systemvoraussetzungen
62,99 inkl. MwSt
(CHF 61,50)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Learn to harness the power of AI for natural language processing, performing tasks such as spell check, text summarization, document classification, and natural language generation. Along the way, you will learn the skills to implement these methods in larger infrastructures to replace existing code or create new algorithms. 

Applied Natural Language Processing with Python starts with reviewing the necessary machine learning concepts before moving onto discussing various NLP problems. After reading this book, you will have the skills to apply these concepts in your own professional environment.


What You Will Learn  
  • Utilize various machine learning and natural language processing libraries such as TensorFlow, Keras, NLTK, and Gensim
  • Manipulate and preprocess raw text data in formats such as .txt and .pdf
  • Strengthen your skills in data science by learning both the theory and the application of various algorithms  

Who This Book Is For 

You should be at least a beginner in ML to get the most out of this text, but you needn't feel that you need be an expert to understand the content.



Taweh Beysolow II is a Machine Learning Scientist and Author currently based in the United States. He has a Bachelor of Science degree in Economics from St. Johns University and a Master of Science in Applied Statistics from Fordham University. His professional experience has included applying machine learning and natural language processing techniques to financial, text (structured and unstructured), and social media data. 
Learn to harness the power of AI for natural language processing, performing tasks such as spell check, text summarization, document classification, and natural language generation. Along the way, you will learn the skills to implement these methods in larger infrastructures to replace existing code or create new algorithms. Applied Natural Language Processing with Python starts with reviewing the necessary machine learning concepts before moving onto discussing various NLP problems. After reading this book, you will have the skills to apply these concepts in your own professional environment.What You Will Learn  Utilize various machine learning and natural language processing libraries such as TensorFlow, Keras, NLTK, and GensimManipulate and preprocess raw text data in formats such as .txt and .pdfStrengthen your skills in data science by learning both the theory and the application of various algorithms  Who This Book Is For You should be at least a beginner in ML to get the most out of this text, but you needn't feel that you need be an expert to understand the content.

Taweh Beysolow II is a Machine Learning Scientist and Author currently based in the United States. He has a Bachelor of Science degree in Economics from St. Johns University and a Master of Science in Applied Statistics from Fordham University. His professional experience has included applying machine learning and natural language processing techniques to financial, text (structured and unstructured), and social media data. 

Chapter 1:  What is Natural Language Processing? Chapter Goal: Establishing understanding of topic and give overview of textNo of pages: 10 pagesSub -Topics1. History of Natural Language Processing 2. Word Embeddings3. Neural Networks applied to Natural Language Processing 4. Python PackagesChapter 2:  Review of Machine LearningChapter Goal: Discuss models that will be referenced in the textNo of pages: 30 pagesSub - Topics 1. Gradient Descent 2. Multi-Layer Perceptrons  3. Recurrent Neural Networks4. LSTM networksChapter 3: Working with Raw Text Chapter Goal: Introduce reader to the fundamental aspects of Natural Language Processing that will be utilized more heavily in the chapters regarding No of pages: 30Sub - Topics:  1. Word Tokenization 2. Preprocessing and cleaning of text data3. Web crawling w/ SpaCy4.          Lemmas, N-grams, and other NATURAL LANGUAGE PROCESSING concepts   Chapter 4: Word Embeddings and their applicationChapter Goal: Introduce reader to the use cases for word embeddings and the packages we utilize for themNo of pages: 50 Sub - Topics: 1. Word2Vec2. Doc2Vec3. GloVeChapter 5: Using Machine Learning w/ Natural language ProcessingChapter Goal: Give reader specific walkthroughs of advanced applications of Natural Language Processing using Machine Learning within greater applications (spellcheck and sentiment analysis)No of pages: 501. Tensorflow2. Keras3. Caffe 

Erscheint lt. Verlag 11.9.2018
Zusatzinfo XV, 150 p. 32 illus.
Verlagsort Berkeley
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Mathematik / Informatik Informatik Software Entwicklung
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Caffee • Deep learning • Keras • machine learning • Natural Language Processing • Neural networks • Python • tensorflow
ISBN-10 1-4842-3733-1 / 1484237331
ISBN-13 978-1-4842-3733-5 / 9781484237335
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
CHF 37,95
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 16,95