Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Design Sensitivity Analysis and Optimization of Electromagnetic Systems - Il Han Park

Design Sensitivity Analysis and Optimization of Electromagnetic Systems (eBook)

(Autor)

eBook Download: PDF
2018 | 1st ed. 2019
XVI, 368 Seiten
Springer Singapore (Verlag)
978-981-13-0230-5 (ISBN)
Systemvoraussetzungen
149,79 inkl. MwSt
(CHF 146,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book presents a comprehensive introduction to design sensitivity analysis theory as applied to electromagnetic systems. It treats the subject in a unified manner, providing numerical methods and design examples. The specific focus is on continuum design sensitivity analysis, which offers significant advantages over discrete design sensitivity methods. Continuum design sensitivity formulas are derived from the material derivative in continuum mechanics and the variational form of the governing equation. Continuum sensitivity analysis is applied to Maxwell equations of electrostatic, magnetostatic and eddy-current systems, and then the sensitivity formulas for each system are derived in a closed form; an integration along the design interface.

The book also introduces the recent breakthrough of the topology optimization method, which is accomplished by coupling the level set method and continuum design sensitivity. This topology optimization method enhances the possibility of the global minimum with minimised computational time, and in addition the evolving shapes during the iterative design process are easily captured in the level set equation. Moreover, since the optimization algorithm is transformed into a well-known transient analysis algorithm for differential equations, its numerical implementation becomes very simple and convenient.

Despite the complex derivation processes and mathematical expressions, the obtained sensitivity formulas are very straightforward for numerical implementation. This book provides detailed explanation of the background theory and the derivation process, which will help readers understand the design method and will set the foundation for advanced research in the future.



Il-Han Park (PhD Seoul National University) is a Professor in the department of Electronic and Electrical Engineering at Sungkyunkwan University. His main interests are in optimization and numerical analysis of electromagnetic systems. His optimization method is based on the design sensitivity analysis for the shape and topology design, and the numerical analysis is focused on the multi-physics electromagnetic problems coupled with the mechanical systems; deformation, dynamics, fluidics, heat transfer.


This book presents a comprehensive introduction to design sensitivity analysis theory as applied to electromagnetic systems. It treats the subject in a unified manner, providing numerical methods and design examples. The specific focus is on continuum design sensitivity analysis, which offers significant advantages over discrete design sensitivity methods. Continuum design sensitivity formulas are derived from the material derivative in continuum mechanics and the variational form of the governing equation. Continuum sensitivity analysis is applied to Maxwell equations of electrostatic, magnetostatic and eddy-current systems, and then the sensitivity formulas for each system are derived in a closed form; an integration along the design interface.The book also introduces the recent breakthrough of the topology optimization method, which is accomplished by coupling the level set method and continuum design sensitivity. This topology optimization method enhances the possibility of the global minimum with minimised computational time, and in addition the evolving shapes during the iterative design process are easily captured in the level set equation. Moreover, since the optimization algorithm is transformed into a well-known transient analysis algorithm for differential equations, its numerical implementation becomes very simple and convenient. Despite the complex derivation processes and mathematical expressions, the obtained sensitivity formulas are very straightforward for numerical implementation. This book provides detailed explanation of the background theory and the derivation process, which will help readers understand the design method and will set the foundation for advanced research in the future.

Il-Han Park (PhD Seoul National University) is a Professor in the department of Electronic and Electrical Engineering at Sungkyunkwan University. His main interests are in optimization and numerical analysis of electromagnetic systems. His optimization method is based on the design sensitivity analysis for the shape and topology design, and the numerical analysis is focused on the multi-physics electromagnetic problems coupled with the mechanical systems; deformation, dynamics, fluidics, heat transfer.

1. Introduction. 1.1 Optimal Design Process. 1.2 Design Steps of Electromagnetic System. 1.3 Design Variables. 1.4 Equations and Characteristics of Electromagnetic Systems. 1.4.1 Maxwell’s Equations and Governing Equations. 1.4.2 Characteristics of Electromagnetic Systems. 1.5 Design Sensitivity Analysis. 1.5.1 Finite Difference Method. 1.5.2 Discrete Method. 1.5.3 Continuum Method.2. Variational Formulation of Electromagnetic Systems. 2.1 Variational Formulation of Electrostatic System. 2.1.1 Differential State Equation. 2.1.2 Variational State Equation. 2.2 Variational Formulation of Magnetostatic System. 2.2.1 Differential State Equation. 2.2.2 Variational State Equation. 2.3 Variational Formulation of Eddy Current System. 2.3.1 Differential State Equation. 2.3.2 Variational State Equation. 2.4 Variational Formulation of DC Conductor System. 2.4.1 Differential State Equation. 2.4.2 Variational State Equation.3. Continuum Shape Design Sensitivity of Electrostatic System. 3.1 Material Derivative and Formula. 3.1.1 Material Derivative. 3.1.2 Material Derivative Formula. 3.2 Shape Sensitivity of Outer Boundary. 3.2.1 Problem Definition and Objective Function. 3.2.2 Lagrange Multiplier Method for Sensitivity Derivation. 3.2.3 Adjoint Variable Method for Sensitivity Analysis. 3.2.4 Boundary Expression of Shape Sensitivity. 3.2.5 Analytical Example. 3.2.6 Numerical Examples. 3.3 Shape Sensitivity of Outer Boundary for System Energy. 3.3.1 Problem Definition. 3.3.2 Lagrange Multiplier Method for Energy Sensitivity. 3.3.3 Adjoint Variable Method for Sensitivity Analysis. 3.3.4 Boundary Expression of Shape Sensitivity. 3.3.5 Source Condition and Capacitance Sensitivity. 3.3.6 Analytical Example. 3.3.7 Numerical Examples. 3.4 Shape Sensitivity of Interface. 3.4.1 Problem Definition and Objective Function. 3.4.2 Lagrange Multiplier Method for Sensitivity Derivation. 3.4.3 Adjoint Variable Method for Sensitivity Analysis. 3.4.4 Boundary Expression of Shape Sensitivity. 3.4.5 Analytical Example. 3.4.6 Numerical Example. 3.5 Shape Sensitivity of Interface for System Energy. 3.5.1 Problem Definition. 3.5.2 Lagrange Multiplier Method for Energy Sensitivity. 3.5.3 Adjoint Variable Method for Sensitivity Analysis. 3.5.4 Boundary Expression of Shape Sensitivity. 3.5.5 Source Condition and Capacitance Sensitivity. 3.5.6 Analytical Example. 3.5.7 Numerical Examples.

 

4. Continuum Shape Design Sensitivity of Magnetostatic System. 4.1 Interface Shape Sensitivity. 4.1.1 Problem Definition and Objective Function. 4.1.2 Lagrange Multiplier Method for Sensitivity Derivation. 4.1.3 Adjoint Variable Method for Sensitivity Analysis. 4.1.4 Boundary Expression of Shape Sensitivity. 4.1.5 Interface Problems. 4.1.6 Analytical Example. 4.1.7 Numerical Examples. 4.2 Interface Shape Sensitivity for System Energy. 4.2.1 Problem Definition. 4.2.2 Lagrange Multiplier Method for Energy Sensitivity. 4.2.3 Adjoint Variable Method for Sensitivity Analysis. 4.2.4 Boundary Expression of Shape Sensitivity. 4.2.5 Interface Problems. 4.2.6 Source Condition and Inductance Sensitivity. 4.2.7 Analytical Examples. 4.2.8 Numerical Examples.

 

5. Continuum Shape Design Sensitivity of Eddy Current System. 5.1 Interface Shape Sensitivity. 5.1.1 Problem Definition and Objective Function. 5.1.2 Lagrange Multiplier Method for Sensitivity Derivation. 5.1.3 Adjoint Variable Method for Sensitivity Analysis. 5.1.4 Boundary Expression of Shape Sensitivity. 5.1.5 Interface Problems. 5.1.6 Numerical Examples. 5.2 Interface Shape Sensitivity for System Power. 5.2.1 Problem Definition. 5.2.2 Adjoint Variable Method for Power Sensitivity. 5.2.3 Boundary Expression of Shape Sensitivity. 5.2.4 Sensitivities of Resistance and Inductance. 5.2.5 Numerical Examples.

 

6. Continuum Shape Design Sensitivity of DC Conductor System. 6.1 Shape Sensitivity of Outer Boundary. 6.1.1 Problem Definition and Objective Function. 6.1.2 Lagrange Multiplier Method for Sensitivity Derivation. 6.1.3 Adjoint Variable Method for Sensitivity Analysis. 6.1.4 Boundary Expression of Shape Sensitivity. 6.2 Shape Sensitivity of Outer Boundary for Joule loss power. 6.2.1 Problem Definition. 6.2.2 Boundary Expression of Shape Sensitivity. 6.2.3 Resistance Sensitivity. 6.2.4 Analytical Examples. 6.2.5 Numerical Examples.

 

7. Level Set Method and Continuum Sensitivity. 7.1 Level Set Method. 7.2 Coupling of Continuum Sensitivity and Level Set Method. 7.3 Numerical Considerations.

 

8. Hole and Dot Sensitivity for Topology Optimization. 8.1 Hole Sensitivity. 8.1.1 Hole Sensitivity in Dielectric Material. 8.1.2 Hole Sensitivity in Magnetic Material. 8.1.3 Numerical Examples. 8.2 Dot Sensitivity. 8.2.1 Dot Sensitivity in Dielectric Material. 8.2.2 Dot Sensitivity in Magnetic Material. 8.2.3 Numerical Examples.  

Appendix A. More Examples of Electrostatic System. A.1 Outer Boundary Design. A.2 Outer Boundary Design for System Energy. A.3 Interface Design. A.4 Interface Design for System Energy. Appendix B. More Examples of Magnetostatic System. B.1 Interface Design. B.2 Interface Design for System Energy.Appendix C. More Examples of Eddy Current System. C.1 Interface Design for System Power. 

Appendix D. More Examples of DC Conductor System. D.1 Outer Boundary Design for Joule Loss Power.

Erscheint lt. Verlag 27.8.2018
Reihe/Serie Mathematical and Analytical Techniques with Applications to Engineering
Mathematical and Analytical Techniques with Applications to Engineering
Zusatzinfo XVI, 368 p. 203 illus.
Verlagsort Singapore
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Continuum Design Sensitivity in Eddy Current System • Continuum Design Sensitivity in Electromagnetics • Continuum Design Sensitivity in Magnetostatics • Discrete Design Sensitivity Analysis • Electromagnetic Field Analysis • Electromagnetic System Design • Governing Equation in Variational Form • Level Set Method and Velocity Field • Optimization of Electromagnetic Systems • Pseudo-Time Transient Analysis • Sensitivity in Complex Variable System • Shape Optimization with Level Set Method • Topology Optimization Method • Voltage-Source Problem
ISBN-10 981-13-0230-8 / 9811302308
ISBN-13 978-981-13-0230-5 / 9789811302305
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 12,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Trigonometrie, Analytische Geometrie, Algebra, Wahrscheinlichkeit

von Walter Strampp

eBook Download (2024)
De Gruyter (Verlag)
CHF 92,75
Angewandte Analysis im Bachelorstudium

von Michael Knorrenschild

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
CHF 34,15

von Siegfried Völkel; Horst Bach; Jürgen Schäfer …

eBook Download (2024)
Carl Hanser Verlag GmbH & Co. KG
CHF 34,15