Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Navier–Stokes Equations on R3 × [0, T] - Frank Stenger, Don Tucker, Gerd Baumann

Navier–Stokes Equations on R3 × [0, T]

Buch | Softcover
X, 226 Seiten
2018 | 1. Softcover reprint of the original 1st ed. 2016
Springer International Publishing (Verlag)
978-3-319-80162-9 (ISBN)
CHF 149,75 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

In this monograph, leading researchers in the world ofnumerical analysis, partial differential equations, and hard computationalproblems study the properties of solutions of the Navier-Stokes partial differential equations on (x, y, z,t) 3 × [0, T]. Initially converting the PDE to asystem of integral equations, the authors then describe spaces A of analytic functions that housesolutions of this equation, and show that these spaces of analytic functionsare dense in the spaces S of rapidlydecreasing and infinitely differentiable functions. This method benefits fromthe following advantages:

  • The functions of S are nearly always conceptual rather than explicit
  • Initial and boundary conditions of solutions of PDE are usually drawn from the applied sciences, and as such, they are nearly always piece-wise analytic, and in this case, the solutions have the same properties
  • When methods ofapproximation are applied to functions of A they converge at an exponential rate, whereas methods of approximation applied to the functions of S converge only at a polynomial rate
  • Enables sharper bounds on the solution enabling easier existence proofs, and a more accurate and more efficient method of solution, including accurate error bounds

Following the proofs of denseness, the authors prove theexistence of a solution of the integral equations in the space of functions A 3 × [0, T], and provide an explicit novelalgorithm based on Sinc approximation and Picard-like iteration for computingthe solution. Additionally, the authors include appendices that provide acustom Mathematica program for computing solutions based on the explicitalgorithmic approximation procedure, and which supply explicit illustrations ofthese computed solutions.

Preface.- Introduction, PDE, and IE Formulations.- Spaces of Analytic Functions.- Spaces of Solution of the N-S Equations.- Proof of Convergence of Iteration 1.6.3.- Numerical Methods for Solving N-S Equations.- Sinc Convolution Examples.- Implementation Notes.- Result Notes.

Erscheinungsdatum
Zusatzinfo X, 226 p. 25 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 367 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Schlagworte Integral equations • navier-stokes equations • Numerical Methods for Solving Navier-Stokes Equati • Numerical Methods for Solving Navier-Stokes Equations • Partial differential equations • Sinc Convolution Examples • Spaces of Analytic Functions
ISBN-10 3-319-80162-7 / 3319801627
ISBN-13 978-3-319-80162-9 / 9783319801629
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch (2022)
Springer Spektrum (Verlag)
CHF 109,95