Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Backward Fuzzy Rule Interpolation - Shangzhu Jin, Qiang Shen, Jun Peng

Backward Fuzzy Rule Interpolation (eBook)

eBook Download: PDF
2018 | 1st ed. 2019
XVII, 159 Seiten
Springer Singapore (Verlag)
978-981-13-1654-8 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book chiefly presents a novel approach referred to as backward fuzzy rule interpolation and extrapolation (BFRI). BFRI allows observations that directly relate to the conclusion to be inferred or interpolated from other antecedents and conclusions. Based on the scale and move transformation interpolation, this approach supports both interpolation and extrapolation, which involve multiple hierarchical intertwined fuzzy rules, each with multiple antecedents. As such, it offers a means of broadening the applications of fuzzy rule interpolation and fuzzy inference. The book deals with the general situation, in which there may be more than one antecedent value missing for a given problem. Two techniques, termed the parametric approach and feedback approach, are proposed in an attempt to perform backward interpolation with multiple missing antecedent values. In addition, to further enhance the versatility and potential of BFRI, the backward fuzzy interpolation method is extended to support ?-cut based interpolation by employing a fuzzy interpolation mechanism for multi-dimensional input spaces (IMUL). Finally, from an integrated application analysis perspective, experimental studies based upon a real-world scenario of terrorism risk assessment are provided in order to demonstrate the potential and efficacy of the hierarchical fuzzy rule interpolation methodology. 



Shangzhu Jin received his B.Sc. degree in Computer Science from Beijing Technology and Business University, China, his M.Sc. degree in Control Theory and Control from Yanshan University, China, and his Ph.D. degree from Aberystwyth University, UK. He is currently an Associate Professor at the School of Electronic Information Engineering, Chongqing University of Science and Technology. His research interests include fuzzy systems, approximate reasoning, and network security. His paper, entitled 'Backward Fuzzy Interpolation and Extrapolation with Multiple Multi-antecedent Rules' won the best student paper award at the 21st IEEE International Conference on Fuzzy Systems. 

Qiang Shen is a Professor and Director of the Institute of Mathematics, Physics and Computer Science (IMPACS) at Aberystwyth University. His major research interests include computational intelligence, fuzzy and qualitative systems, reasoning and learning under uncertainty, pattern recognition, data mining, and real-world applications of such techniques for decision support (e.g., crime detection, space exploration, consumer profiling, systems monitoring, and medical diagnosis). He has published two research monographs and over 360 peer-refereed papers. A number of his papers have received prestigious international prizes. 

Jun Peng received a Ph.D. degree in Computer Software and Theory from Chongqing University in 2003, an M.A. in Computer System Architecture from Chongqing University in 2000, and a BSc in Applied Mathematics from Northeast University in 1992. From 1992 to present he has worked at Chongqing University of Science and Technology, where he is currently a Professor and Dean of the School of Electrical and Information Engineering. He was a visiting scholar in the Laboratory of Cryptography and Information Security at Tsukuba University, Japan in 2004, and at theDepartment of Computer Science at California State University, Sacramento in 2007, respectively. He has authored or coauthored over 60 peer-reviewed journal and conference papers. He has served as a program committee member or session co-chair for over 10 international conferences, e.g. the IEEE SEKE'10, ICCI*CC'11-17, ICISME 2012, andICOACS'16. His current research interests are in cryptography, chaos and network security, image processingand intelligence computation.



This book chiefly presents a novel approach referred to as backward fuzzy rule interpolation and extrapolation (BFRI). BFRI allows observations that directly relate to the conclusion to be inferred or interpolated from other antecedents and conclusions. Based on the scale and move transformation interpolation, this approach supports both interpolation and extrapolation, which involve multiple hierarchical intertwined fuzzy rules, each with multiple antecedents. As such, it offers a means of broadening the applications of fuzzy rule interpolation and fuzzy inference. The book deals with the general situation, in which there may be more than one antecedent value missing for a given problem. Two techniques, termed the parametric approach and feedback approach, are proposed in an attempt to perform backward interpolation with multiple missing antecedent values. In addition, to further enhance the versatility and potential of BFRI, the backward fuzzy interpolation method isextended to support a-cut based interpolation by employing a fuzzy interpolation mechanism for multi-dimensional input spaces (IMUL). Finally, from an integrated application analysis perspective, experimental studies based upon a real-world scenario of terrorism risk assessment are provided in order to demonstrate the potential and efficacy of the hierarchical fuzzy rule interpolation methodology. 

Shangzhu Jin received his B.Sc. degree in Computer Science from Beijing Technology and Business University, China, his M.Sc. degree in Control Theory and Control from Yanshan University, China, and his Ph.D. degree from Aberystwyth University, UK. He is currently an Associate Professor at the School of Electronic Information Engineering, Chongqing University of Science and Technology. His research interests include fuzzy systems, approximate reasoning, and network security. His paper, entitled “Backward Fuzzy Interpolation and Extrapolation with Multiple Multi-antecedent Rules” won the best student paper award at the 21st IEEE International Conference on Fuzzy Systems.  Qiang Shen is a Professor and Director of the Institute of Mathematics, Physics and Computer Science (IMPACS) at Aberystwyth University. His major research interests include computational intelligence, fuzzy and qualitative systems, reasoning and learning under uncertainty, pattern recognition, data mining, and real-world applications of such techniques for decision support (e.g., crime detection, space exploration, consumer profiling, systems monitoring, and medical diagnosis). He has published two research monographs and over 360 peer-refereed papers. A number of his papers have received prestigious international prizes.  Jun Peng received a Ph.D. degree in Computer Software and Theory from Chongqing University in 2003, an M.A. in Computer System Architecture from Chongqing University in 2000, and a BSc in Applied Mathematics from Northeast University in 1992. From 1992 to present he has worked at Chongqing University of Science and Technology, where he is currently a Professor and Dean of the School of Electrical and Information Engineering. He was a visiting scholar in the Laboratory of Cryptography and Information Security at Tsukuba University, Japan in 2004, and at theDepartment of Computer Science at California State University, Sacramento in 2007, respectively. He has authored or coauthored over 60 peer-reviewed journal and conference papers. He has served as a program committee member or session co-chair for over 10 international conferences, e.g. the IEEE SEKE’10, ICCI*CC’11-17, ICISME 2012, andICOACS’16. His current research interests are in cryptography, chaos and network security, image processingand intelligence computation.

Introduction.- Background: Fuzzy Rule Interpolation (FRI).- BFRI with a Single Missing Antecedent Value (S-BFRI).- BFRI with Multiple Missing Antecedent Values (M-BFRI).- An Alternative BFRI Method.- Backward rough-fuzzy rule interpolation.- Application: Terrorism Risk Assessment using BFRI.- Conclusion.- Appendix A Publications Arising from the Thesis.- Appendix B List of Acronyms.- Appendix C Glossary of terms.- Bibliography.

Erscheint lt. Verlag 12.8.2018
Zusatzinfo XVII, 159 p. 44 illus., 27 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Informatik Weitere Themen CAD-Programme
Technik
Schlagworte Approximation Reasoning • Artificial Intelligence • Backward Fuzzy Interpoltion • Fuzzy Interpolation • Fuzzy Logic
ISBN-10 981-13-1654-6 / 9811316546
ISBN-13 978-981-13-1654-8 / 9789811316548
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
CHF 37,95
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 16,95