Practical Java Machine Learning
Apress (Verlag)
978-1-4842-3950-6 (ISBN)
Practical Java Machine Learning includes multiple projects, with particular focus on the Android mobile platform and features such as sensors, camera, and connectivity, each of which produce data that can power unique machine learning solutions. You will learn to build a variety of applications that demonstrate the capabilities of the Google Cloud Platform machine learning API, including data visualizationfor Java; document classification using the Weka ML environment; audio file classification for Android using ML with spectrogram voice data; and machine learning using device sensor data.
After reading this book, you will come away with case study examples and projects that you can take away as templates for re-use and exploration for your own machine learning programming projects with Java.
What You Will Learn
Identify, organize, and architect the data required for ML projects
Deploy ML solutions in conjunction with cloud providers such as Google and Amazon
Determine which algorithm is the most appropriate for a specific ML problem
Implement Java ML solutions on Android mobile devices
Create Java ML solutions to work with sensor data
Build Java streaming based solutions
Who This Book Is For
Experienced Java developers who have not implemented machine learning techniques before.
Mark Wickham is an active developer and has been a developer for many years, mostly in Java. He is passionate about exploring advances in artificial intelligence and machine learning using Java. New software approaches, applied to the ever expanding volume of data we now have available to us, enables us to create Java solutions which were not before conceivable. He is a frequent speaker at developer conferences. His popular classes cover practical topics such as connectivity, push messaging, and audio/video. Mark has led software development teams for Motorola, delivering infrastructure solutions to global telecommunications customers. While at Motorola, Mark also led product management and product marketing teams in the Asia Pacific region. Mark has been involved in software and technology for more than 30 years and began to focus on the Android platform in 2009, creating private cloud and tablet based solutions for the enterprise. Mark majored in Computer Science andPhysics at Creighton University, and later obtained an MBA from the University of Washington and the Hong Kong University of Science and Technology. Mark is also active as a freelance video producer, photographer, and enjoys recording live music. Previously Mark wrote Practical Android (Apress, 2018).
1. Introduction.- 2. Data: The Fuel for Machine Learning.- 3. Leveraging Cloud Platforms.- 4. Algorithms: The Brains of Machine Learning.- 5. Java Machine Learning Environments.- 6. Integrating Models.
Erscheinungsdatum | 08.11.2018 |
---|---|
Zusatzinfo | 155 Illustrations, black and white; XXIII, 392 p. 155 illus. |
Verlagsort | Berkley |
Sprache | englisch |
Maße | 178 x 254 mm |
Themenwelt | Informatik ► Programmiersprachen / -werkzeuge ► Java |
Informatik ► Software Entwicklung ► SOA / Web Services | |
Informatik ► Theorie / Studium ► Compilerbau | |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Mathematik / Informatik ► Informatik ► Web / Internet | |
Schlagworte | AI • algorithms • Android • Artificial Intelligence • Big Data • Cloud • Code • Data Science • Data Visualization • Java • machine learning • ML • Mobile • programming • supervised learning • Unsupervised Learning • Visualization |
ISBN-10 | 1-4842-3950-4 / 1484239504 |
ISBN-13 | 978-1-4842-3950-6 / 9781484239506 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich