Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Neural Networks in Unity - Abhishek Nandy, Manisha Biswas

Neural Networks in Unity (eBook)

C# Programming for Windows 10
eBook Download: PDF
2018 | 1st ed.
XI, 158 Seiten
Apress (Verlag)
978-1-4842-3673-4 (ISBN)
Systemvoraussetzungen
36,99 inkl. MwSt
(CHF 36,10)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Learn the core concepts of neural networks and discover the different types of neural network, using Unity as your platform. In this book you will start by exploring back propagation and unsupervised neural networks with Unity and C#. You'll then move onto activation functions, such as sigmoid functions, step functions, and so on. The author also explains all the variations of neural networks such as feed forward, recurrent, and radial.

Once you've gained the basics, you'll start programming Unity with C#. In this section the author discusses constructing neural networks for unsupervised learning, representing a neural network in terms of data structures in C#, and replicating a neural network in Unity as a simulation. Finally, you'll define back propagation with Unity C#, before compiling your project.

What You'll Learn

  • Discover the concepts behind neural networks
  • Work with Unity and C# 
  • See the difference between fully connected and convolutional neural networks
  • Master neural network processing for Windows 10 UWP

Who This Book Is For

Gaming professionals, machine learning and deep learning enthusiasts.



Abhishek Nandy is B.Tech in IT and he is a constant learner.He is Microsoft MVP at Windows Platform,Intel Black belt Developer as well as Intel Software Innovator he has keen interest on AI,IoT and Game Development

Currently serving as a Application Architect in an IT Firm as well as consulting AI,IoT as well doing projects on AI,ML and Deep learning.He also is an AI trainer and driving the technical part of Intel AI Student developer program.He was involved in the first Make in India initiative where he was among top 50 innovators and got trained in IIMA.

Manisha Biswas is BTech in Information Technology and currently working as Data Scientist at Prescriber360,in kolkata, India.She is involved with several areas of technology including Web Development, IoT,Soft Computing and Artificial Intelligence.She is an Intel Software Innovator and was also awarded the SHRI DEWANG MEHTA IT AWARDS 2016 by NASSCOM,a certificate of excellence for top academic scores. She is founder of WOMEN IN TECHNOLOGY,Kolkata a tech community to empower women to learn and explore new technologies.She always like to invent things,create something new,or to invent a new look for the old things. When not in front of my terminal, She is an explorer,a traveller,a foodie, a doodler and a dreamer.She is always very passionate to share her knowledge and ideas with others.She is following her passion and doing the same currently by sharing her experiences to the community so that others can learn and give shape to her ideas in a new way this lead her to become Google Women Techmakers Kolkata Chapter Lead.

Learn the core concepts of neural networks and discover the different types of neural network, using Unity as your platform. In this book you will start by exploring back propagation and unsupervised neural networks with Unity and C#. You'll then move onto activation functions, such as sigmoid functions, step functions, and so on. The author also explains all the variations of neural networks such as feed forward, recurrent, and radial.Once you've gained the basics, you'll start programming Unity with C#. In this section the author discusses constructing neural networks for unsupervised learning, representing a neural network in terms of data structures in C#, and replicating a neural network in Unity as a simulation. Finally, you'll define back propagation with Unity C#, before compiling your project.What You'll LearnDiscover the concepts behind neural networksWork with Unity and C# See the difference between fully connected and convolutional neural networksMaster neural network processing for Windows 10 UWPWho This Book Is ForGaming professionals, machine learning and deep learning enthusiasts.
Erscheint lt. Verlag 14.7.2018
Zusatzinfo XI, 158 p. 107 illus.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Informatik Software Entwicklung Spieleprogrammierung
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Artificial Intelligence • Back Propogation • C# • Conventional Neural Networks • Neural networks • UNITY
ISBN-10 1-4842-3673-4 / 1484236734
ISBN-13 978-1-4842-3673-4 / 9781484236734
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 6,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich