Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Almost Global Solutions of Capillary-Gravity Water Waves Equations on the Circle - Massimiliano Berti, Jean-Marc Delort

Almost Global Solutions of Capillary-Gravity Water Waves Equations on the Circle

Buch | Softcover
X, 269 Seiten
2018 | 1st ed. 2018
Springer International Publishing (Verlag)
978-3-319-99485-7 (ISBN)
CHF 67,35 inkl. MwSt

The goal of this monograph is to prove that any solution of the Cauchy problem for the capillary-gravity water waves equations, in one space dimension, with periodic, even in space, small and smooth enough initial data, is almost globally defined in time on Sobolev spaces, provided the gravity-capillarity parameters are taken outside an exceptional subset of zero measure.

 In contrast to the many results known for these equations on the real line, with decaying Cauchy data, one cannot make use of dispersive properties of the linear flow. Instead, a normal forms-based procedure is used, eliminating those contributions to the Sobolev energy that are of lower degree of homogeneity in the solution. Since the water waves equations form a quasi-linear system, the usual normal forms approaches would face the well-known problem of losses of derivatives in the unbounded transformations. To overcome this, after a paralinearization of the capillary-gravity water waves equations,we perform several paradifferential reductions to obtain a diagonal system with constant coefficient symbols, up to smoothing remainders. Then we start with a normal form procedure where the small divisors are compensated by the previous paradifferential regularization. The reversible structure of the water waves equations, and the fact that we seek solutions even in space, guarantees a key cancellation which prevents the growth of the Sobolev norms of the solutions.

Introduction.- MainResult. - Paradifferential Calculus. - Complex Formulation of the Equation and Diagonalization of the Matrix Symbol. - Reduction to a Constant Coefficients Operator and Proof of the Main Theorem. - The Dirichlet-Neumann Paradifferential Problem. - Dirichlet-Neumann Operator and the Good Unknown. - Proof of Some Auxiliary Results.

Erscheinungsdatum
Reihe/Serie Lecture Notes of the Unione Matematica Italiana
Zusatzinfo X, 269 p. 3 illus.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 433 g
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Schlagworte 35A01, 76B15, 35Q35 • Capillary-gravity water waves • Long-time existence for PDEs • normal forms • Paradifferential calculus • Partial differential equations • Small Divisors
ISBN-10 3-319-99485-9 / 3319994859
ISBN-13 978-3-319-99485-7 / 9783319994857
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
CHF 48,95
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
CHF 34,95