Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Learning from Imbalanced Data Sets - Alberto Fernández, Salvador García, Mikel Galar, Ronaldo C. Prati, Bartosz Krawczyk, Francisco Herrera

Learning from Imbalanced Data Sets

Buch | Hardcover
XVIII, 377 Seiten
2018 | 1st ed. 2018
Springer International Publishing (Verlag)
978-3-319-98073-7 (ISBN)
CHF 224,65 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

This  book provides a general and comprehensible overview of   imbalanced learning.  It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considers the different scenarios in Data Science for which the imbalanced classification can create a real challenge. 

This book stresses the gap with standard classification tasks by reviewing the case studies and ad-hoc performance metrics that are applied in this area. It also covers the different approaches that have been traditionally applied to address the binary skewed class distribution. Specifically, it reviews cost-sensitive learning, data-level preprocessing methods and algorithm-level solutions, taking also into account those ensemble-learning solutions that embed any of the former alternatives. Furthermore, it focuses on the extension of the problem for multi-class problems, where the former classical methods are no longer to be applied in a straightforward way.

This book also focuses on the data intrinsic characteristics that are the main causes which, added to the uneven class distribution, truly hinders the performance of classification algorithms in this scenario. Then, some notes on data reduction are provided in order to understand the advantages related to the use of this type of approaches.

Finally this book introduces some novel areas of study that are gathering a deeper attention on the imbalanced data issue. Specifically, it considers the classification of data streams, non-classical classification problems, and the scalability related to Big Data. Examples of software libraries and modules to address imbalanced classification are provided.

This book is highly suitable for technical professionals, senior undergraduate and graduate students in the areas of data science, computer science and engineering.  It will also be useful for scientists and researchers to gain insight on the current developments in this area of study, as well as future research directions. 

1 Introduction to KDD and Data Science.- 2 Foundations on Imbalanced Classification.- 3 Performance measures.- 4 Cost-sensitive Learning.- 5 Data Level Preprocessing Methods.- 6 Algorithm-level Approaches.- 7 Ensemble Learning.- 8 Imbalanced Classification with Multiple Classes.- 9 Dimensionality Reduction for Imbalanced Learning.- 10 Data Intrinsic Characteristics.- 11 Learning from Imbalanced Data Streams.- 12 Non-Classical Imbalanced Classification Problems.- 13 Imbalanced Classification for Big Data.- 14 Software and Libraries for Imbalanced Classification. 

Erscheinungsdatum
Zusatzinfo XVIII, 377 p. 71 illus., 50 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 754 g
Themenwelt Mathematik / Informatik Informatik Netzwerke
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Big Data • classification • cost-sensitive learning • Data Mining • Data preprocessing • Data reduction • Data streams • dimensionality reduction • ensemble learning • Imbalanced Data • machine learning
ISBN-10 3-319-98073-4 / 3319980734
ISBN-13 978-3-319-98073-7 / 9783319980737
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
CHF 39,20