Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Integral Equations (eBook)

eBook Download: EPUB
2012
256 Seiten
Dover Publications (Verlag)
978-0-486-15830-3 (ISBN)

Lese- und Medienproben

Integral Equations -  F. G. Tricomi
Systemvoraussetzungen
19,33 inkl. MwSt
(CHF 18,85)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Authoritative, well-written treatment of extremely useful mathematical tool with wide applications. Topics include Volterra Equations, Fredholm Equations, Symmetric Kernels and Orthogonal Systems of Functions, more. Advanced undergraduate to graduate level. Exercises. Bibliography.
This classic text on integral equations by the late Professor F. G. Tricomi, of the Mathematics Faculty of the University of Turin, Italy, presents an authoritative, well-written treatment of the subject at the graduate or advanced undergraduate level. To render the book accessible to as wide an audience as possible, the author has kept the mathematical knowledge required on the part of the reader to a minimum; a solid foundation in differential and integral calculus, together with some knowledge of the theory of functions is sufficient. The book is divided into four chapters, with two useful appendices, an excellent bibliography, and an index. A section of exercises enables the student to check his progress. Contents include Volterra Equations, Fredholm Equations, Symmetric Kernels and Orthogonal Systems of Functions, Types of Singular or Nonlinear Integral Equations, and more. Professor Tricomi has presented the principal results of the theory with sufficient generality and mathematical rigor to facilitate theoretical applications. On the other hand, the treatment is not so abstract as to be inaccessible to physicists and engineers who need integral equations as a basic mathematical tool. In fact, most of the material in this book falls into an analytical framework whose content and methods are already traditional.

1. Volterra Equations 1.1 A Mechanical Problem Leading to an Integral Equation 1.2 Integral Equations and Algebraic Systems of Linear Equations 1.3 Volterra Equations 1.4 L subscript 2-Kernels and Functions 1.5 Solution of Volterra Integral Equations of the Second Kind 1.6 Volterra Equations of the First Kind 1.7 An Example 1.8 Volterra Integral Equations and Linear Differential Equations 1.9 Equations of the Faltung type (Closed Cycle Type) 1.10 Transverse Oscillations of a Bar 1.11 Application to the Bessel Functions 1.12 Some Generalizations of the Theory of Volterra Equations 1.13 Non-Linear Volterra Equations2. Fredholm Equations 2.1 Solution by the Method of Successive Approximations: Neumann's Series 2.2 An Example 2.3 Fredholm's Equations with Pincherle-Goursat Kernels 2.4 The Fredholm Theorem for General Kernels 2.5 The Formulae of Fredholm 2.6 Numerical Solution of Integral Equations 2.7 The Fredholm Solution of the Dirichlet Problem3. Symmetric Kernels and Orthogonal Systems of Functions 3.1 Introductory Remarks and a Process of Orthogonalization 3.2 Approximation and Convergence in the Mean 3.3 The Riesz-Fischer Theorem 3.4 Completeness and Closure 3.5 Completeness of the Trigonometric System and of the Polynomials 3.6 Approximation of a General L subscript 2-Kernel by Means of PG-Kernels 3.7 Enskog's Method 3.8 The Spectrum of a Symmetric Kernel 3.9 The Bilinear Formula 3.10 The Hilbert-Schmidt Theorem and Its Applications 3.11 Extremal Properties and Bounds for Eigenvalues 3.12 Positive Kernels--Mercer's Theorem 3.13 Connection with the Theory of Linear Differential Equations 3.14 Critical Velocities of a Rotating Shaft and Transverse Oscillations of a Beam 3.15 Symmetric Fredholm Equations of the First Kind 3.16 Reduction of a Fredholm Equation to a Similar One with a Symmetric Kernel 3.17 Some Generalizations 3.18 Vibrations of a Membrane4. Some Types of Singular or Non-Linear Integral Equations 4.1 Orientation and Examples 4.2 Equations with Cauchy's Principal Value of an Integral and Hilbert's Transformation 4.3 The Finite Hilbert Transformation and the Airfoil Equation 4.4 Singular Equations of the Carleman Type 4.5 General Remarks About Non-Linear Integral Equations 4.6 Non-Linear Equations of the Hammerstein Type 4.7 Forced Oscillations of Finite AmplitudeAppendix I. Algebraic Systems of Linear EquationsAppendix II. Hadamard's Theorem Exercises; References; Index

Erscheint lt. Verlag 27.4.2012
Reihe/Serie Dover Books on Mathematics
Sprache englisch
Maße 140 x 140 mm
Gewicht 281 g
Themenwelt Mathematik / Informatik Mathematik Analysis
ISBN-10 0-486-15830-6 / 0486158306
ISBN-13 978-0-486-15830-3 / 9780486158303
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich