Security Policy in System-on-Chip Designs
Springer International Publishing (Verlag)
978-3-319-93463-1 (ISBN)
This book offers readers comprehensive coverage of security policy specification using new policy languages, implementation of security policies in Systems-on-Chip (SoC) designs - current industrial practice, as well as emerging approaches to architecting SoC security policies and security policy verification. The authors focus on a promising security architecture for implementing security policies, which satisfies the goals of flexibility, verification, and upgradability from the ground up, including a plug-and-play hardware block in which all policy implementations are enclosed. Using this architecture, they discuss the ramifications of designing SoC security policies, including effects on non-functional properties (power/performance), debug, validation, and upgrade. The authors also describe a systematic approach for "hardware patching", i.e., upgrading hardware implementations of security requirements safely, reliably, and securely in the field, meeting a critical need for diverse Internet of Things (IoT) devices.
- Provides comprehensive coverage of SoC security requirements, security policies, languages, and security architecture for current and emerging computing devices;
- Explodes myths and ambiguities in SoC security policy implementations, and provide a rigorous treatment of the subject;
- Demonstrates a rigorous, step-by-step approach to developing a diversity of SoC security policies;
- Introduces a rigorous, disciplined approach to "hardware patching", i.e., secure technique for updating hardware functionality of computing devices in-field;
- Includes discussion of current and emerging approaches for security policy verification.
Sandip Ray is an Endowed IoT Term Professor at the Department of Electrical and Computer Engineering, University of Florida. His research involves developing correct, dependable, secure, and trustworthy computing through cooperation of specification, synthesis, architecture and validation technologies. His research targets next-generation computing applications, including autonomous automotive systems, smart homes, intelligent implants, etc. Before joining University of Florida, Dr. Ray was a Senior Principal Engineer at NXP Semiconductors, where he led the R&D on security validation for automotive and Internet- of-Things applications. Prior to that, he was a Research Scientist at Intel Strategic CAD Labs, where he worked on pre-silicon and post-silicon validation of security and functional correctness of SoC designs, design-for-security and design-for-debug architectures, CAD tools, and specifications for SoC design requirements. Prior to joining industry, Dr. Ray was a Research Scientist at University of Texas at Austin, where he led several sponsored projects from DARPA, SRC, and National Science Foundation. Dr. Ray is the author of three books (one upcoming) and over 60 publications in peer-reviewed premier international journals and conferences. He served as guest editors for an IEEE Transactions on Multi-Scale Systems (TMSCS) special issue on Wearables, Implants, and Internet-of-Things, as well as special issues of ACM Transactions on Design Automation of Electronic Systems (TODAES) and Springer Journal on Electronic Testing Theory and Applications (JETTA). He has given number of invited, tutorial, and keynote presentations at several international forums on security, validation, and energy challenges in the IoT regime. During his tenure in industry, Dr. Ray served as Intel and NXP representative in Semiconductor Research Consortium (SRC) technical advisory board, and as semiconductor industry representative on trustworthy systems to the Semiconductor Industry Association (SIA). He has served as a program committee member for more than 50 international meetings and conferences, and as program chair for Formal Methods in Computer-Aided Design (FMCAD). He currently serves as an Associate Editor for IEEE TMSCS and Springer Journal on Hardware and Systems Security. He has a Ph.D. from University of Texas at Austin and is a Senior Member of IEEE. Abhishek Basak is a research scientist in Security and Privacy Research, Intel Labs. He completed his PhD in Computer Engineering from Case Western Reserve University in 2016. Before that, he got his Bachelors in Electrical Engineering from Jadavpur University, India in 2010. Dr. Basak's research interests lie in the fields of hardware assists for security of S/W layer stacks, trustworthy compute platforms, reconfigurable hardware architectures and energy efficient, reliable hardware design methodologies. He has more than 15 research publications, including conferences like DAC, ICCAD, VTS, ITC as well as journals like IEEE TCAD, TIFS, D&T. He currently holds 2 patents and is a member of IEEE.
Chapter1: SoC Security Policies: The State of the Practice.- Chapter2: E-IIPS: A Centralized Policy Implementation Architecture.- Chapter3: Exploiting Design-for-Debug in SoC Security Policy Architecture.- Chapter4: Security Assurance in SoC in presence of Untrusted IP Blocks.- Chapter5: A Move Towards a Hardware Patch.- Chapter6: SoC Security Policy Verification.- Chapter7: SoC Security Policies: Summary and Future Directions.
Erscheinungsdatum | 21.10.2018 |
---|---|
Zusatzinfo | IX, 116 p. 30 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 349 g |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | Hardware and Systems Security • Hardware Protection through Obfuscation • Hardware security and trust • IP and SoC Security • SoC Security Architecture |
ISBN-10 | 3-319-93463-5 / 3319934635 |
ISBN-13 | 978-3-319-93463-1 / 9783319934631 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich