Compressed Sensing and Its Applications
Third International MATHEON Conference 2017
Seiten
2019
|
1st ed. 2019
Springer International Publishing (Verlag)
978-3-319-73073-8 (ISBN)
Springer International Publishing (Verlag)
978-3-319-73073-8 (ISBN)
The chapters in this volume highlight the state-of-the-art of compressed sensing and are based on talks given at the third international MATHEON conference on the same topic, held from December 4-8, 2017 at the Technical University in Berlin. In addition to methods in compressed sensing, chapters provide insights into cutting edge applications of deep learning in data science, highlighting the overlapping ideas and methods that connect the fields of compressed sensing and deep learning. Specific topics covered include:
- Quantized compressed sensing
- Classification
- Machine learning
- Oracle inequalities
- Non-convex optimization
- Image reconstruction
- Statistical learning theory
An Introduction to Compressed Sensing.- Quantized Compressed Sensing: a Survey.- On reconstructing functions from binary measurements.- Classification scheme for binary data with extensions.- Generalization Error in Deep Learning.- Deep learning for trivial inverse problems.- Oracle inequalities for local and global empirical risk minimizers.- Median-Truncated Gradient Descent: A Robust and Scalable Nonconvex Approach for Signal Estimation.- Reconstruction Methods in THz Single-pixel Imaging.
Erscheinungsdatum | 22.04.2019 |
---|---|
Reihe/Serie | Applied and Numerical Harmonic Analysis |
Zusatzinfo | XVII, 295 p. 57 illus., 39 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 621 g |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Schlagworte | compressed sensing • Compressed sensing 2019 • Compressed sensing book • Compressed sensing introduction • Compressed sensing theory and applications • deep learning book • Deep learning compressed sensing • dimensionality reduction • Fourier phase retrieval • Generalization error machine learning • Hilbert spaces • Information and Communication, Circuits • machine learning • MATHEON conference • Quantized compressed sensing • random matrices • Signal sensing book • sparse approximation • sparse probability measures • stochastic block model |
ISBN-10 | 3-319-73073-8 / 3319730738 |
ISBN-13 | 978-3-319-73073-8 / 9783319730738 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
was jeder über Informatik wissen sollte
Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15
Grundlagen – Anwendungen – Perspektiven
Buch | Softcover (2022)
Springer Vieweg (Verlag)
CHF 48,95
Eine Einführung in die Systemtheorie
Buch | Softcover (2022)
UTB (Verlag)
CHF 34,95