Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Computational Excursions in Analysis and Number Theory - Peter Borwein

Computational Excursions in Analysis and Number Theory

(Autor)

Buch | Hardcover
220 Seiten
2002
Springer-Verlag New York Inc.
978-0-387-95444-8 (ISBN)
CHF 149,75 inkl. MwSt
Find a polynomial of degree n with eoeffieients in the set { + 1, -I} that has smallest possible supremum norm on the unit disko The Prouhet-Tarry-Escott Problem. The techniques for tackling these problems are various and include proba­ bilistic methods, combinatorial methods, "the circle method," and Diophantine and analytic techniques.
This book is designed for a topics course in computational number theory. It is based around a number of difficult old problems that live at the interface of analysis and number theory. Some of these problems are the following: The Integer Chebyshev Problem. Find a nonzero polynomial of degree n with integer eoeffieients that has smallest possible supremum norm on the unit interval. Littlewood's Problem. Find a polynomial of degree n with eoeffieients in the set { + 1, -I} that has smallest possible supremum norm on the unit disko The Prouhet-Tarry-Escott Problem. Find a polynomial with integer co­ effieients that is divisible by (z - l)n and has smallest possible 1 norm. (That 1 is, the sum of the absolute values of the eoeffieients is minimal.) Lehmer's Problem. Show that any monie polynomial p, p(O) i- 0, with in­ teger coefficients that is irreducible and that is not a cyclotomic polynomial has Mahler measure at least 1.1762 .... All of the above problems are at least forty years old; all are presumably very hard, certainly none are completely solved; and alllend themselves to extensive computational explorations. The techniques for tackling these problems are various and include proba­ bilistic methods, combinatorial methods, "the circle method," and Diophantine and analytic techniques. Computationally, the main tool is the LLL algorithm for finding small vectors in a lattice. The book is intended as an introduction to a diverse collection of techniques.

1 Introduction.- 2 LLL and PSLQ.- 3 Pisot and Salem Numbers.- 4 Rudin-Shapiro Polynomials.- 5 Fekete Polynomials.- 6 Products of Cyclotomic Polynomials.- 7 Location of Zeros.- 8 Maximal Vanishing.- 9 Diophantine Approximation of Zeros.- 10 The Integer Chebyshev Problem.- 11 The Prouhet-Tarry-Escott Problem.- 12 The Easier Waring Problem.- 13 The Erd?s-Szekeres Problem.- 14 Barker Polynomials and Golay Pairs.- 15 The Littlewood Problem.- 16 Spectra.- A A Compendium of Inequalities.- B Lattice Basis Reduction and Integer Relations.- C Explicit Merit Factor Formulae.- D Research Problems.

Reihe/Serie CMS Books in Mathematics
Zusatzinfo 4 Illustrations, black and white; X, 220 p. 4 illus.
Verlagsort New York, NY
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
ISBN-10 0-387-95444-9 / 0387954449
ISBN-13 978-0-387-95444-8 / 9780387954448
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
CHF 48,95
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
CHF 34,95
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15