A Bridge to Higher Mathematics
CRC Press (Verlag)
978-1-138-44163-7 (ISBN)
The only way to understand mathematics is by doing mathematics. The reader will learn the language of axioms and theorems and will write convincing and cogent proofs using quantifiers. Students will solve many puzzles and encounter some mysteries and challenging problems.
The emphasis is on proof. To progress towards mathematical maturity, it is necessary to be trained in two aspects: the ability to read and understand a proof and the ability to write a proof.
The journey begins with elements of logic and techniques of proof, then with elementary set theory, relations and functions. Peano axioms for positive integers and for natural numbers follow, in particular mathematical and other forms of induction. Next is the construction of integers including some elementary number theory. The notions of finite and infinite sets, cardinality of counting techniques and combinatorics illustrate more techniques of proof.
For more advanced readers, the text concludes with sets of rational numbers, the set of reals and the set of complex numbers. Topics, like Zorn‘s lemma and the axiom of choice are included. More challenging problems are marked with a star.
All these materials are optional, depending on the instructor and the goals of the course.
Valentin Deaconu teaches at University of Nevada, Reno.
Elements of logicTrue and false statementsLogical connectives and truth tablesLogical equivalenceQuantifiersProofs: Structures and strategiesAxioms, theorems and proofsDirect proofContrapositive proofProof by equivalent statementsProof by casesExistence proofsProof by counterexampleProof by mathematical inductionElementary Theory of Sets. FunctionsAxioms for set theoryInclusion of setsUnion and intersection of setsComplement, difference and symmetric difference of setsOrdered pairs and the Cartersian productFunctionsDefinition and examples of functionsDirect image, inverse imageRestriction and extension of a functionOne-to-one and onto functionsComposition and inverse functions*Family of sets and the axiom of choiceRelationsGeneral relations and operations with relationsEquivalence relations and equivalence classesOrder relations*More on ordered sets and Zorn's lemmaAxiomatic theory of positive integersPeano axioms and additionThe natural order relation and subtractionMultiplication and divisibilityNatural numbersOther forms of inductionElementary number theoryAboslute value and divisibility of integersGreatest common divisor and least common multipleIntegers in base 10 and divisibility testsCardinality. Finite sets, infinite setsEquipotent setsFinite and infinite setsCountable and uncountable setsCounting techniques and combinatoricsCounting principlesPigeonhole principle and parityPermutations and combinationsRecursive sequences and recurrence relationsThe construction of integers and rationals Definition of integers and operationsOrder relation on integersDefinition of rationals, operations and orderDecimal representation of rational numbersThe construction of real and complex numbersThe Dedekind cuts approachThe Cauchy sequences approachDecimal representation of real numbersAlgebraic and transcendental numbersComples numbersThe trigonometric form of a complex number
Erscheinungsdatum | 05.09.2017 |
---|---|
Reihe/Serie | Textbooks in Mathematics |
Verlagsort | London |
Sprache | englisch |
Maße | 156 x 234 mm |
Gewicht | 453 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Logik / Mengenlehre | |
ISBN-10 | 1-138-44163-5 / 1138441635 |
ISBN-13 | 978-1-138-44163-7 / 9781138441637 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich