Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Essential Real Analysis - Michael Field

Essential Real Analysis

(Autor)

Buch | Softcover
XVII, 450 Seiten
2017 | 1st ed. 2017
Springer International Publishing (Verlag)
978-3-319-67545-9 (ISBN)
CHF 52,40 inkl. MwSt

This book provides a rigorous introduction to the techniques and results of real analysis, metric spaces and multivariate differentiation, suitable for undergraduate courses.

Starting from the very foundations of analysis, it offers a complete first course in real analysis, including topics rarely found in such detail in an undergraduate textbook such as the construction of non-analytic smooth functions, applications of the Euler-Maclaurin formula to estimates, and fractal geometry. Drawing on the author's extensive teaching and research experience, the exposition is guided by carefully chosen examples and counter-examples, with the emphasis placed on the key ideas underlying the theory. Much of the content is informed by its applicability: Fourier analysis is developed to the point where it can be rigorously applied to partial differential equations or computation, and the theory of metric spaces includes applications to ordinary differential equations andfractals.

Essential Real Analysis will appeal to students in pure and applied mathematics, as well as scientists looking to acquire a firm footing in mathematical analysis. Numerous exercises of varying difficulty, including some suitable for group work or class discussion, make this book suitable for self-study as well as lecture courses.

Michael Field has held appointments in the UK (Warwick University and Imperial College London), Australia (Sydney University) and the US (the University of Houston and Rice University) and has taught a wide range of courses at undergraduate and graduate level, including real analysis, partial differential equations, dynamical systems, differential manifolds, Lie groups, complex manifolds and sheaf cohomology. His publications in the areas of equivariant dynamical systems and network dynamics include nine books and research monographs as well as many research articles. His computer graphic art work, based on symmetric dynamics, has been widely exhibited and is on display at a number of universities around the world.

1 Sets, functions and the real numbers.- 2 Basic properties of real numbers, sequences and continuous functions.- 3 Infinite series.- 4 Uniform convergence.- 5 Functions.- 6. Topics from classical analysis: The Gamma-function and the Euler-Maclaurin formula.- 7 Metric spaces.- 8 Fractals and iterated function systems.- 9 Differential calculus on Rm.- Bibliography. Index.

"This is a well written text on Real Analysis that may be used for a course in Advanced Calculus. It can also serve as a reference for advanced topics in Real Analysis." (Charles Traina, MAA Reviews, January 4, 2020)
"This book contains a reasonably complete exposition of real analysis which is needed for beginning undergraduate-level students. ... This is a well-written textbook with an abundance of worked examples and exercises that are intended for a first course in analysis. This book offers a sound grounding in analysis. In particular, it gives a solid base in real analysis from which progress to more advanced topics may be made." (Teodora-Liliana Radulescu, zbMATH 1379.26001, 2018)

Erscheinungsdatum
Reihe/Serie Springer Undergraduate Mathematics Series
Zusatzinfo XVII, 450 p. 30 illus., 1 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 655 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte 26-01, 40-01, 26Axx, 26Bxx, 26B05, 26B10, 26Exx, 2 • 26-01, 40-01, 26Axx, 26Bxx, 26B05, 26B10, 26Exx, 26E05, 26E10 • 33Bxx, 33B15, 34A12, 40Axx, 42Axx, 42A10, 54Exx, 5 • 33Bxx, 33B15, 34A12, 40Axx, 42Axx, 42A10, 54Exx, 54-01, 54E35 • Calculus & mathematical analysis • Calculus & mathematical analysis • derivative of vector-valued map • Euler-MacLaurin formula • existence theorem for ODEs • fourier analysis • Fourier series • Functional analysis & transforms • Functional analysis & transforms • implicit function theorem • infinite series and products • Mathematics • mathematics and statistics • metric space in real analysis • Metric space theory • power series • real analysis books • Real analysis, real variables • real analysis techniques • real functions • Sequences, Series, Summability • smooth and analytic functions • smooth functions theory • Topology • Uniform Approximation • use of euler maclaurin formula
ISBN-10 3-319-67545-1 / 3319675451
ISBN-13 978-3-319-67545-9 / 9783319675459
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
CHF 109,95