Finite and Profinite Quantum Systems (eBook)
XIII, 196 Seiten
Springer International Publishing (Verlag)
978-3-319-59495-8 (ISBN)
This monograph provides an introduction to finite quantum systems, a field at the interface between quantum information and number theory, with applications in quantum computation and condensed matter physics.
The first major part of this monograph studies the so-called `qubits' and `qudits', systems with periodic finite lattice as position space. It also discusses the so-called mutually unbiased bases, which have applications in quantum information and quantum cryptography. Quantum logic and its applications to quantum gates is also studied.
The second part studies finite quantum systems, where the position takes values in a Galois field. This combines quantum mechanics with Galois theory. The third part extends the discussion to quantum systems with variables in profinite groups, considering the limit where the dimension of the system becomes very large. It uses the concepts of inverse and direct limit and studies quantum mechanics on p-adic numbers.
Applications of the formalism include quantum optics and quantum computing, two-dimensional electron systems in magnetic fields and the magnetic translation group, the quantum Hall effect, other areas in condensed matter physics, and Fast Fourier Transforms.
The monograph combines ideas from quantum mechanics with discrete mathematics, algebra, and number theory. It is suitable for graduate students and researchers in quantum physics, mathematics and computer science.Apostolos Vourdas is a Professor of Computing at the University of Bradford, UK, with research interests spanning various aspects of quantum computing (analytic functions in quantum physics; algebraic and group theory methods; finite quantum systems; Galois fields and p-adic numbers in quantum computing; quantum logic and lattice theory). He has published over 160 refereed journal papers and 8 invited review articles, and has an h-index of 34.
Apostolos Vourdas is a Professor of Computing at the University of Bradford, UK, with research interests spanning various aspects of quantum computing (analytic functions in quantum physics; algebraic and group theory methods; finite quantum systems; Galois fields and p-adic numbers in quantum computing; quantum logic and lattice theory). He has published over 160 refereed journal papers and 8 invited review articles, and has an h-index of 34.
Mathematical symbols. 1 Introduction. 2 Partial orders and Pontryagin duality. 3 The ring ℤ (d). 4 Quantum systems with variables in ℤ (d).5 Finite Geometries and Mutually Unbiased Bases. 6 Quantum logic of finite quantum systems. 7 Galois fields. 8 Quantum systems with variables in GF(pe). 9 p-adic numbers and profinite groups. 10 A quantum system with positions in the profinite group ℤp. 11 A quantum system with positions in the profinite group ℤ. Index.
Erscheint lt. Verlag | 17.7.2017 |
---|---|
Reihe/Serie | Quantum Science and Technology | Quantum Science and Technology |
Zusatzinfo | XIII, 196 p. 7 illus., 4 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik |
Naturwissenschaften ► Physik / Astronomie ► Theoretische Physik | |
Schlagworte | Finite quantum systems • Galois fields • Heisenberg-Weyl group • Mutually Unbiased Bases • Profinite Groups • Quantum Logic • Symplectic Group |
ISBN-10 | 3-319-59495-8 / 3319594958 |
ISBN-13 | 978-3-319-59495-8 / 9783319594958 |
Haben Sie eine Frage zum Produkt? |
Größe: 3,0 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich