Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications (eBook)
XIII, 194 Seiten
Springer Singapore (Verlag)
978-981-10-4965-1 (ISBN)
The book will provide:
1) In depth explanation of rough set theory along with examples of the concepts.
2) Detailed discussion on idea of feature selection.
3) Details of various representative and state of the art feature selection techniques along with algorithmic explanations.4) Critical review of state of the art rough set based feature selection methods covering strength and weaknesses of each.
5) In depth investigation of various application areas using rough set based feature selection.
6) Complete Library of Rough Set APIs along with complexity analysis and detailed manual of using APIs
7) Program files of various representative Feature Selection algorithms along with explanation of each.
The book will be a complete and self-sufficient source both for primary and secondary audience. Starting from basic concepts to state-of-the art implementation, it will be a constant source of help both for practitioners and researchers.Book will provide in-depth explanation of concepts supplemented with working examples to help in practical implementation. As far as practical implementation is concerned, the researcher/practitioner can fully concentrate on his/her own work without any concern towards implementation of basic RST functionality.
Providing complexity analysis along with full working programs will further simplify analysis and comparison of algorithms.
Dr Summair Raza has PhD specialization in Software Engineering from National University of Science and Technology (NUST), Pakistan. He completed his MS from International Islamic University, Pakistan in 2009. He is also associated with Virtual University of Pakistan as Assistant Professor. He has published various papers in international level journals and conferences. His research interests include Feature Selection, Rough Set Theory, Trend Analysis, Software Architecture, Software Design and Non-Functional Requirements.
Dr Usman Qamar has over 15 years of experience in data engineering both in academia and industry. He has Masters in Computer Systems Design from University of Manchester Institute of Science and Technology (UMIST), UK. His MPhil and PhD in Computer Science are from University of Manchester. Dr Qamar's research expertise are in Data and Text Mining, Expert Systems, Knowledge Discovery and Feature Selection. He has published extensively in these subject areas. His Post PhD work at University of Manchester, involved various data engineering projects which included hybrid mechanisms for statistical disclosure and customer profile analysis for shopping with the University of Ghent, Belgium. He is currently an Assistant Professor at Department of Computer Engineering, National University of Sciences and Technology (NUST), Pakistan and also heads the Knowledge and Data Engineering Research Centre (KDRC) at NUST.
The book will provide:1) In depth explanation of rough set theory along with examples of the concepts.2) Detailed discussion on idea of feature selection.3) Details of various representative and state of the art feature selection techniques along with algorithmic explanations.4) Critical review of state of the art rough set based feature selection methods covering strength and weaknesses of each.5) In depth investigation of various application areas using rough set based feature selection.6) Complete Library of Rough Set APIs along with complexity analysis and detailed manual of using APIs7) Program files of various representative Feature Selection algorithms along with explanation of each.The book will be a complete and self-sufficient source both for primary and secondary audience. Starting from basic concepts to state-of-the art implementation, it will be a constant source of help both for practitioners and researchers. Book will provide in-depth explanation of concepts supplemented with working examples to help in practical implementation. As far as practical implementation is concerned, the researcher/practitioner can fully concentrate on his/her own work without any concern towards implementation of basic RST functionality. Providing complexity analysis along with full working programs will further simplify analysis and comparison of algorithms.
Dr Summair Raza has PhD specialization in Software Engineering from National University of Science and Technology (NUST), Pakistan. He completed his MS from International Islamic University, Pakistan in 2009. He is also associated with Virtual University of Pakistan as Assistant Professor. He has published various papers in international level journals and conferences. His research interests include Feature Selection, Rough Set Theory, Trend Analysis, Software Architecture, Software Design and Non-Functional Requirements. Dr Usman Qamar has over 15 years of experience in data engineering both in academia and industry. He has Masters in Computer Systems Design from University of Manchester Institute of Science and Technology (UMIST), UK. His MPhil and PhD in Computer Science are from University of Manchester. Dr Qamar’s research expertise are in Data and Text Mining, Expert Systems, Knowledge Discovery and Feature Selection. He has published extensively in these subject areas. His Post PhD work at University of Manchester, involved various data engineering projects which included hybrid mechanisms for statistical disclosure and customer profile analysis for shopping with the University of Ghent, Belgium. He is currently an Assistant Professor at Department of Computer Engineering, National University of Sciences and Technology (NUST), Pakistan and also heads the Knowledge and Data Engineering Research Centre (KDRC) at NUST.
Introduction to Feature Selection.- Background.- Rough Set Theory.- Advance Concepts in RST.- Rough Set Based Feature Selection Techniques.- Unsupervised Feature Selection using RST.- Critical Analysis of Feature Selection Algorithms.- RST Source Code.
Erscheint lt. Verlag | 28.6.2017 |
---|---|
Zusatzinfo | XIII, 194 p. 75 illus. |
Verlagsort | Singapore |
Sprache | englisch |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge | |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | attribute reduction • dimensionality reduction • Feature Selection (FS) • Rough Set Theory (RST) • RSAR |
ISBN-10 | 981-10-4965-3 / 9811049653 |
ISBN-13 | 978-981-10-4965-1 / 9789811049651 |
Haben Sie eine Frage zum Produkt? |
Größe: 7,0 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich