Classifying the Absolute Toral Rank Two Case (eBook)
394 Seiten
De Gruyter (Verlag)
978-3-11-051689-0 (ISBN)
The problem of classifying the finite dimensional simple Lie algebras over fields of characteristic p > 0 is a long standing one. Work on this question has been directed by the Kostrikin Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p > 5 a finite dimensional restricted simple Lie algebra is classical or of Cartan type. This conjecture was proved for p > 7 by Block and Wilson in 1988. The generalization of the Kostrikin-Shafarevich Conjecture for the general case of not necessarily restricted Lie algebras and p > 7 was announced in 1991 by Strade and Wilson and eventually proved by Strade in 1998. The final Block-Wilson-Strade-Premet Classification Theorem is a landmark result of modern mathematics and can be formulated as follows: Every simple finite dimensional simple Lie algebra over an algebraically closed field of characteristic p > 3 is of classical, Cartan, or Melikian type.
This is the second part of a three-volume book about the classifi cation of the simple Lie algebras over algebraically closed fi elds of characteristic > 3. The first volume contains the methods, examples and a first classification result. This second volume presents insight in the structure of tori of Hamiltonian and Melikian algebras. Based on sandwich element methods due to A. I. Kostrikin and A. A. Premet and the investigations of filtered and graded Lie algebras, a complete proof for the classification of absolute toral rank 2 simple Lie algebras over algebraically closed fields of characteristic > 3 is given.
Contents
- Tori in Hamiltonian and Melikian algebras
- 1-sections
- Sandwich elements and rigid tori
- Towards graded algebras
- The toral rank 2 case
Helmut Strade, University of Hamburg, Germany.
Helmut Strade, University of Hamburg, Germany.
Erscheint lt. Verlag | 10.4.2017 |
---|---|
Reihe/Serie | De Gruyter Expositions in Mathematics |
De Gruyter Expositions in Mathematics | |
ISSN | ISSN |
Verlagsort | Berlin/Boston |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Schlagworte | classification • fields of positive characteristic • Lie Algebras • Lie algebras, fields of positive characteristic, classification |
ISBN-10 | 3-11-051689-6 / 3110516896 |
ISBN-13 | 978-3-11-051689-0 / 9783110516890 |
Haben Sie eine Frage zum Produkt? |
Größe: 21,0 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich