Structure Theory (eBook)
550 Seiten
De Gruyter (Verlag)
978-3-11-051523-7 (ISBN)
The problem of classifying the finite dimensional simple Lie algebras over fields of characteristic p > 0 is a long-standing one. Work on this question has been directed by the Kostrikin-Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p > 5 a finite dimensional restricted simple Lie algebra is classical or of Cartan type. This conjecture was proved for p > 7 by Block and Wilson in 1988. The generalization of the Kostrikin-Shafarevich Conjecture for the general case of not necessarily restricted Lie algebras and p > 7 was announced in 1991 by Strade and Wilson and eventually proved by Strade in 1998. The final Block-Wilson-Strade-Premet Classification Theorem is a landmark result of modern mathematics and can be formulated as follows: Every simple finite dimensional simple Lie algebra over an algebraically closed field of characteristic p > 3 is of classical, Cartan, or Melikian type.
In the three-volume book, the author is assembling the proof of the Classification Theorem with explanations and references. The goal is a state-of-the-art account on the structure and classification theory of Lie algebras over fields of positive characteristic.
This first volume is devoted to preparing the ground for the classification work to be performed in the second and third volumes. The concise presentation of the general theory underlying the subject matter and the presentation of classification results on a subclass of the simple Lie algebras for all odd primes will make this volume an invaluable source and reference for all research mathematicians and advanced graduate students in algebra. The second edition is corrected.
Contents
Toral subalgebras in p-envelopes
Lie algebras of special derivations
Derivation simple algebras and modules
Simple Lie algebras
Recognition theorems
The isomorphism problem
Structure of simple Lie algebras
Pairings of induced modules
Toral rank 1 Lie algebras
Helmut Strade, University of Hamburg, Germany.
Helmut Strade, University of Hamburg, Germany.
"This book will be very useful for researchers in modular Lie theory and especially for those who want to attack the classification of finite-dimensional simple Lie algebras over an algebraically closed field of characteristic p = 3."Jörg Feldvoss, Zentralblatt für Mathematik 25/2005
Erscheint lt. Verlag | 24.4.2017 |
---|---|
Reihe/Serie | De Gruyter Expositions in Mathematics |
De Gruyter Expositions in Mathematics | |
ISSN | ISSN |
Verlagsort | Berlin/Boston |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Schlagworte | fields of positive characteristic • Lie Algebras • Lie algebras, fields of positive characteristic, structure theory • structure theory |
ISBN-10 | 3-11-051523-7 / 3110515237 |
ISBN-13 | 978-3-11-051523-7 / 9783110515237 |
Haben Sie eine Frage zum Produkt? |
Größe: 88,6 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich