Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Facial Kinship Verification - Haibin Yan, Jiwen Lu

Facial Kinship Verification (eBook)

A Machine Learning Approach

, (Autoren)

eBook Download: PDF
2017 | 1st ed. 2017
X, 82 Seiten
Springer Singapore (Verlag)
978-981-10-4484-7 (ISBN)
Systemvoraussetzungen
53,49 inkl. MwSt
(CHF 52,25)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book provides the first systematic study of facial kinship verification, a new research topic in biometrics. It presents three key aspects of facial kinship verification: 1) feature learning for kinship verification, 2) metric learning for kinship verification, and 3) video-based kinship verification, and reviews state-of-the-art research findings on facial kinship verification.

Many of the feature-learning and metric-learning methods presented in this book can also be easily applied for other face analysis tasks, e.g., face recognition, facial expression recognition, facial age estimation and gender classification. Further, it is a valuable resource for researchers working on other computer vision and pattern recognition topics such as feature-learning-based and metric-learning-based visual analysis. 




Dr. Haibin Yan received her B.Eng. and M.Eng. degrees from the Xi'an University of Technology, Xi'an, China, in 2004 and 2007, and her Ph.D. degree from the National University of Singapore in 2013, all in mechanical engineering. She is currently an assistant professor at the School of Automation, Beijing University of Posts and Telecommunications, China. From October 2013 to July 2015, she was a research fellow at the Department of Mechanical Engineering, National University of Singapore, Singapore. Her research interests include pattern recognition and robotic vision. She has published more than 20 papers in major journals, such as the IEEE Transactions on Cybernetics, the IEEE Transactions on Information Forensics and Security, and Image and Vision Computing. Her research on facial kinship verification was funded by the National Science Foundation of China in 2016.

Dr. Jiwen Lu received his B.Eng. degree in mechanical engineering and M.Eng. degree in electrical engineering from the Xi'an University of Technology, Xi'an, China, and his Ph.D. degree in electrical engineering from the Nanyang Technological University, Singapore, in 2003, 2006, and 2012, respectively. He is currently an associate professor at the Department of Automation, Tsinghua University, Beijing, China. From March 2011 to November 2015, he was a research scientist at the Advanced Digital Sciences Center, Singapore. His research interests include computer vision, pattern recognition, and machine learning. He has authored/co-authored over 140 scientific papers in these areas, 38 of which were IEEE Transactions papers. He serves/has served as an associate editor of Pattern Recognition Letters, Neurocomputing, and IEEE Access; a managing guest editor of Pattern Recognition and Image and Vision Computing, a guest editor of Computer Vision and Image Understanding, and an elected member of the Information Forensics and Security Technical Committee of the IEEE Signal Processing Society. He is/was a workshop chair/special session chair/area chair for more than 10 international conferences. He was a recipient of the National 1000 Young Talents Plan Program in 2015.


This book provides the first systematic study of facial kinship verification, a new research topic in biometrics. It presents three key aspects of facial kinship verification: 1) feature learning for kinship verification, 2) metric learning for kinship verification, and 3) video-based kinship verification, and reviews state-of-the-art research findings on facial kinship verification. Many of the feature-learning and metric-learning methods presented in this book can also be easily applied for other face analysis tasks, e.g., face recognition, facial expression recognition, facial age estimation and gender classification. Further, it is a valuable resource for researchers working on other computer vision and pattern recognition topics such as feature-learning-based and metric-learning-based visual analysis. 

Dr. Haibin Yan received her B.Eng. and M.Eng. degrees from the Xi'an University of Technology, Xi'an, China, in 2004 and 2007, and her Ph.D. degree from the National University of Singapore in 2013, all in mechanical engineering. She is currently an assistant professor at the School of Automation, Beijing University of Posts and Telecommunications, China. From October 2013 to July 2015, she was a research fellow at the Department of Mechanical Engineering, National University of Singapore, Singapore. Her research interests include pattern recognition and robotic vision. She has published more than 20 papers in major journals, such as the IEEE Transactions on Cybernetics, the IEEE Transactions on Information Forensics and Security, and Image and Vision Computing. Her research on facial kinship verification was funded by the National Science Foundation of China in 2016. Dr. Jiwen Lu received his B.Eng. degree in mechanical engineering and M.Eng. degree in electrical engineering from the Xi'an University of Technology, Xi'an, China, and his Ph.D. degree in electrical engineering from the Nanyang Technological University, Singapore, in 2003, 2006, and 2012, respectively. He is currently an associate professor at the Department of Automation, Tsinghua University, Beijing, China. From March 2011 to November 2015, he was a research scientist at the Advanced Digital Sciences Center, Singapore. His research interests include computer vision, pattern recognition, and machine learning. He has authored/co-authored over 140 scientific papers in these areas, 38 of which were IEEE Transactions papers. He serves/has served as an associate editor of Pattern Recognition Letters, Neurocomputing, and IEEE Access; a managing guest editor of Pattern Recognition and Image and Vision Computing, a guest editor of Computer Vision and Image Understanding, and an elected member of the Information Forensics and Security Technical Committee of the IEEE Signal Processing Society. He is/was a workshop chair/special session chair/area chair for more than 10 international conferences. He was a recipient of the National 1000 Young Talents Plan Program in 2015.

1. Introduction to Facial Kinship Verification.- 2. Feature Learning for Facial Kinship Verification.- 3. Metric Learning for Facial Kinship Verification.- 4. Video-Based Facial Kinship Verification.- 5. Conclusions and Future Work.

Erscheint lt. Verlag 31.5.2017
Reihe/Serie SpringerBriefs in Computer Science
SpringerBriefs in Computer Science
Zusatzinfo X, 82 p. 33 illus., 29 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte biometrics • face analysis • Feature learning • Kinship Verification • metric learning
ISBN-10 981-10-4484-8 / 9811044848
ISBN-13 978-981-10-4484-7 / 9789811044847
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Discover the smart way to polish your digital imagery skills by …

von Gary Bradley

eBook Download (2024)
Packt Publishing (Verlag)
CHF 29,30
Explore powerful modeling and character creation techniques used for …

von Lukas Kutschera

eBook Download (2024)
Packt Publishing (Verlag)
CHF 42,20
Generate creative images from text prompts and seamlessly integrate …

von Margarida Barreto

eBook Download (2024)
Packt Publishing (Verlag)
CHF 31,65