Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Topological Theory of Graphs (eBook)

(Autor)

eBook Download: EPUB
2017
369 Seiten
De Gruyter (Verlag)
978-3-11-047922-5 (ISBN)

Lese- und Medienproben

Topological Theory of Graphs - Yanpei Liu
Systemvoraussetzungen
169,95 inkl. MwSt
(CHF 165,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book introduces polyhedra as a tool for graph theory and discusses their properties and applications in solving the Gauss crossing problem. The discussion is extended to embeddings on manifolds, particularly to surfaces of genus zero and non-zero via the joint tree model, along with solution algorithms. Given its rigorous approach, this book would be of interest to researchers in graph theory and discrete mathematics.



Yanpei Liu, Beijing Jiaotong University, Beijing, China.

lt;P>Yanpei Liu, Beijing Jiaotong University, Beijing, China.

lt;P>Table of Content:
Preface
Chapter 1 Preliminaries
1.1 Sets and relations
1.2 Partitions and permutations
1.3 Graphs and networks
1.4 Groups and spaces
1.5 Notes
Chapter 2 Polyhedra
2.1 Polygon double covers
2.2 Supports and skeletons
2.3 Orientable polyhedra
2.4 Nonorientable polyhedral
2.5 Classic polyhedral
2.6 Notes
Chapter 3 Surfaces
3.1 Polyhegons
3.2 Surface closed curve axiom
3.3 Topological transformations
3.4 Complete invariants
3.5 Graphs on surfaces
3.6 Up-embeddability
3.7 Notes
Chapter 4 Homology on Polyhedra
4.1 Double cover by travels
4.2 Homology
4.3 Cohomology
4.4 Bicycles
4.5 Notes
Chapter 5 Polyhedra on the Sphere
5.1 Planar polyhedra
5.2 Jordan closed curve axiom
5.3 Uniqueness
5.4 Straight line representations
5.5 Convex representation
5.6 Notes
Chapter 6 Automorphisms of a Polyhedron
6.1 Automorphisms
6.2 V -codes and F-codes
6.3 Determination of automorphisms
6.4 Asymmetrization
6.5 Notes
Chapter 7 Gauss Crossing Sequences
7.1 Crossing polyhegons
7.2 Dehns transformation
7.3 Algebraic principles
7.4 Gauss Crossing problem
7.5 Notes
Chapter 8 Cohomology on Graphs
8.1 Immersions
8.2 Realization of planarity
8.3 Reductions
8.4 Planarity auxiliary graphs
8.5 Basic conclusions
8.6 Notes
Chapter 9 Embeddability on Surfaces
9.1 Joint tree model
9.2 Associate polyhegons
9.3 A transformation
9.4 Criteria of embeddability
9.5 Notes
Chapter 10 Embeddings on the Sphere
10.1 Left and right determinations
10.2 Forbidden Congurations
10.3 Basic order characterization
10.4 Number of planar embeddings
10.5 Notes
Chapter 11 Orthogonality on Surfaces
11.1 Denitions
11.2 On surfaces of genus zero
11.3 Surface Model
11.4 On surfaces of genus not zero
11.5 Notes
Chapter 12 Net Embeddings
12.1 Denitions
12.2 Face admissibility
12.3 General criterion
12.4 Special criteria
12.5 Notes
Chapter 13 Extremality on Surfaces
13.1 Maximal genus
13.2 Minimal genus
13.3 Shortest embedding
13.4 Thickness
13.5 Crossing number
13.6 Minimal bend
13.7 Minimal area
13.8 Notes
Chapter 14 Matroidal Graphicness
14.1 Denitions
14.2 Binary matroids
14.3 Regularity
14.4 Graphicness
14.5 Cographicness
14.6 Notes
Chapter 15 Knot Polynomials
15.1 Denitions
15.2 Knot diagram
15.3 Tutte polynomial
15.4 Pan-polynomial
15.5 Jones polynomial
15.6 Notes
Reference
Index

Erscheint lt. Verlag 6.3.2017
Co-Autor University of Science & Technology
Zusatzinfo 72 b/w ill., 5 b/w tbl.
Verlagsort Berlin/Boston
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Mathematik / Informatik Mathematik Graphentheorie
Technik
ISBN-10 3-11-047922-2 / 3110479222
ISBN-13 978-3-11-047922-5 / 9783110479225
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Wasserzeichen)
Größe: 23,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich