Wavelet Analysis on the Sphere (eBook)
156 Seiten
Walter de Gruyter GmbH & Co.KG (Verlag)
978-3-11-048188-4 (ISBN)
The goal of this monograph is to develop the theory of wavelet harmonic analysis on the sphere. By starting with orthogonal polynomials and functional Hilbert spaces on the sphere, the foundations are laid for the study of spherical harmonics such as zonal functions. The book also discusses the construction of wavelet bases using special functions, especially Bessel, Hermite, Tchebychev, and Gegenbauer polynomials.
Anouar Ben Mabrouk, Sabrine Arfaoui and Imen Rezgui, University of Monastir, Tunisia.
Erscheint lt. Verlag | 20.3.2017 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Technik | |
ISBN-10 | 3-11-048188-X / 311048188X |
ISBN-13 | 978-3-11-048188-4 / 9783110481884 |
Haben Sie eine Frage zum Produkt? |
Größe: 1,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich