Bifurcation in Autonomous and Nonautonomous Differential Equations with Discontinuities (eBook)
XI, 166 Seiten
Springer Singapore (Verlag)
978-981-10-3180-9 (ISBN)
1) Prof. Dr. Marat Akhmet is a member of the Department of Mathematics, Middle East Technical University, Turkey. He is a specialist in dynamical models, bifurcation theory, chaos theory and differential equations. He has spent several years investigating the dynamics of neural networks, economic models and mechanical systems. He has published 4 books on different topics of dynamical systems.
2) Dr. Ardak Kashkynbayev obtained his PhD from the Department of Mathematics, Middle East Technical University, Turkey. His research focuses on differential equations, bifurcation theory, chaos theory and applications to mechanical systems.
This book focuses on bifurcation theory for autonomous and nonautonomous differential equations with discontinuities of different types - those with jumps present either in the right-hand side, or in trajectories or in the arguments of solutions of equations. The results obtained can be applied to various fields, such as neural networks, brain dynamics, mechanical systems, weather phenomena and population dynamics. Developing bifurcation theory for various types of differential equations, the book is pioneering in the field. It presents the latest results and provides a practical guide to applying the theory to differential equations with various types of discontinuity. Moreover, it offers new ways to analyze nonautonomous bifurcation scenarios in these equations. As such, it shows undergraduate and graduate students how bifurcation theory can be developed not only for discrete and continuous systems, but also for those that combine these systems in very different ways. At the same time, it offers specialists several powerful instruments developed for the theory of discontinuous dynamical systems with variable moments of impact, differential equations with piecewise constant arguments of generalized type and Filippov systems.
1) Prof. Dr. Marat Akhmet is a member of the Department of Mathematics, Middle East Technical University, Turkey. He is a specialist in dynamical models, bifurcation theory, chaos theory and differential equations. He has spent several years investigating the dynamics of neural networks, economic models and mechanical systems. He has published 4 books on different topics of dynamical systems. 2) Dr. Ardak Kashkynbayev obtained his PhD from the Department of Mathematics, Middle East Technical University, Turkey. His research focuses on differential equations, bifurcation theory, chaos theory and applications to mechanical systems.
Introduction.- Hopf Bifurcation in Impulsive Systems.- Hopf Bifurcation in Fillopov Systems.- Nonautonomous Transcritical and Pitchfork Bifurcations in an Impulsive Bernoulli Equations.- Nonautonomous Transcritical and Pitchfork Bifurcations in Scalar Non-solvable Impulsive Differential Equations.- Nonautonomous Transcritical and Pitchfork Bifurcations in Bernoulli Equations with Piecewise Constant Argument of Generalized Type.
Erscheint lt. Verlag | 23.1.2017 |
---|---|
Reihe/Serie | Nonlinear Physical Science | Nonlinear Physical Science |
Zusatzinfo | XI, 166 p. 31 illus., 26 illus. in color. |
Verlagsort | Singapore |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Naturwissenschaften ► Physik / Astronomie | |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | Center manifold theory • Discontinuous dynamical systems • Discontinuous Right-Hand Side • Hopf Bifurcation • Impulsive systems • Nonautonomous bifurcation • Ordinary differential equations • piecewise constant argument |
ISBN-10 | 981-10-3180-0 / 9811031800 |
ISBN-13 | 978-981-10-3180-9 / 9789811031809 |
Haben Sie eine Frage zum Produkt? |
Größe: 4,8 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich