Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Dynamical and Geometric Aspects of Hamilton-Jacobi and Linearized Monge-Ampère Equations - Nam Q. Le, Hiroyoshi Mitake, Hung V. Tran

Dynamical and Geometric Aspects of Hamilton-Jacobi and Linearized Monge-Ampère Equations

VIASM 2016
Buch | Softcover
VII, 228 Seiten
2017 | 1st ed. 2017
Springer International Publishing (Verlag)
978-3-319-54207-2 (ISBN)
CHF 56,90 inkl. MwSt

Consisting of two parts, the first part of this volume is an essentially self-contained exposition of the geometric aspects of local and global regularity theory for the Monge-Ampère and linearized Monge-Ampère equations. As an application, we solve the second boundary value problem of the prescribed affine mean curvature equation, which can be viewed as a coupling of the latter two equations. Of interest in its own right, the linearized Monge-Ampère equation also has deep connections and applications in analysis, fluid mechanics and geometry, including the semi-geostrophic equations in atmospheric flows, the affine maximal surface equation in affine geometry and the problem of finding Kahler metrics of constant scalar curvature in complex geometry.  

Among other topics, the second part provides a thorough exposition of the large time behavior and discounted approximation of Hamilton-Jacobi equations, which have received much attention in the last two decades, and a newapproach to the subject, the nonlinear adjoint method, is introduced. The appendix offers a short introduction to the theory of viscosity solutions of first-order Hamilton-Jacobi equations.

 

Preface by Nguyen Huu Du (Managing director of VIASM).-Miroyoshi Mitake and Hung V. Tran: Dynamical properties of Hamilton-Jacobi equations via the nonlinear adjoint method: Large time behavior and Discounted approximation.- Nam Q. Le: The second boundary value problem of the prescribed affine mean curvature equation and related linearized Monge-Ampère equation.

Erscheinungsdatum
Reihe/Serie Lecture Notes in Mathematics
Zusatzinfo VII, 228 p. 16 illus., 1 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 373 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte 35B10,35B27,35B40, 35B45,35B50,35B51,35B65,35D40,3 • 35B10,35B27,35B40, 35B45,35B50,35B51,35B65,35D40,35J40, • affine Bernstein problem • affine mean curvature equation • Ca arelli-Guti errez Harnack inequality • Ca arelli-Guti´errez Harnack inequality • Caarelli-Guti errez Harnack inequality • Caffarelli-Guti´errez Harnack inequality • Calculus of Variations • Calculus of Variations and Optimal Control • Differential & Riemannian geometry • Differential calculus & equations • Differential calculus & equations • Differential Geometry • Differential & Riemannian geometry • Hamilton-Jacobi equations • introduction to the theory of viscosity solutions • Large time behavior • linearized Monge-Ampere equations • Mathematics • mathematics and statistics • Monge-Ampere equations • Optimization • Partial differential equations • second boundary value problem • selection problem
ISBN-10 3-319-54207-9 / 3319542079
ISBN-13 978-3-319-54207-2 / 9783319542072
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
CHF 109,95